| 研究生: |
鄧宇廷 Yu-Ting Deng |
|---|---|
| 論文名稱: |
跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數 Pneumatic cross-hole injection tests to estimate flow parameters in heterogeneous and unsaturated soil layers |
| 指導教授: |
倪春發
Chuen-Fa Ni |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 孔隙率 、氣體滲透係數 、跨孔式注氣試驗 、非飽和土壤 |
| 外文關鍵詞: | Gas permeability, Porosity, Pneumatic cross-hole test, Unsaturated soil |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
土壤滲透係數(permeability)及孔隙率(porosity)常被用來作為氣相流體在非飽和土壤或岩石中流動能力的指標,為非飽和層中兩項非常重要的基本參數。傳統上欲得知此兩參數常使用水力試驗來量測,但在現地使用水力試驗量測非飽和層中土壤或岩石參數在技術上具有相當大的困難性,因此許多研究已發展出使用注入氣體的方式取代水力試驗來量測非飽和土壤參數。過去研究中所發展的注氣試驗(pneumatic test)大多僅能量測整個土樣之平均氣體滲透係數,本研究將使用相似於水力剖面掃瞄法(hydraulic tomography)之概念,應用於一維與二維砂箱跨孔式注氣試驗數據,推估砂箱內非飽和土壤參數的空間異質性分佈。跨孔式注氣試驗(pneumatic cross-hole test)乃將穩定氣體注入非飽和砂樣中,利用多次變換注氣點、觀測點及注入之氣體流量,記錄通過砂樣之氣壓變化,可獲得多組氣壓變化數據,最後套用前人研究中所使用之解析解計算出其氣體滲透係數(gas permeability),並參考ASTM D854-83規範(土粒比重試驗)間接量測出各砂樣之孔隙率。再結合剖面掃瞄法概念所發展出來之序率反推估模式,對實驗室尺度之注氣試驗數據進行土壤氣體滲透係數及孔隙率之推估。砂箱實驗結果顯示,即使在相同的砂樣中,注氣量的大小及觀測位置影響推估氣體滲透係數的結果甚巨,相同砂樣設置甚至有10倍以上的推估差異。垂直二維模式測試例顯示此模式可非常準確的推估出氣體滲透係數的空間分佈情形,但孔隙率推估結果稍差。套用實驗數據後的推估結果並不如預期,僅氣體滲透係數獲得合理之參數範圍,砂箱之砂樣分佈型態未能完全推估出來,此外,由於實驗操作方式或砂箱設備問題,使得氣壓初期變化過快過大,造成無法推估出孔隙率於砂箱中的分佈。
Soil permeability and porosity are key indicators usually used for characterization of gas phase flows in unsaturated soil or rocks. Classical approaches to obtain these two parameters usually employ hydraulic tests. However, the characterization of unsaturated flow parameters for soil or rocks by mean of hydraulic tests is fraught with technical difficulties. To resolve the difficulties, much literature has conducted field tests with gas rather than with water to characterize the flow parameters of unsaturated soils. Transitional pneumatic tests can only characterize average gas permeability for the tested soil sample. This study uses the concept similar to the one in the hydraulic tomography surveys and applies to cross-hole pneumatic injection tests in laboratory sandbox. Such measurements from pneumatic tests will then be used for estimations of unsaturated soil parameters in sandbox. Pneumatic cross-hole test injects gas in one location and monitoring the variations of air pressures at other locations in the sandbox. The same injection event is repeated at different injection locations. The sequential pneumatic tests can yield a series of gas pressure measurements. Such measurements are first for permeability analyzed by employing approaches that are proposed by previous studies. The estimation of porosity follow the procedures in ASTM D854-83(Test Methods for Specific Gravity). Same cross-hole measurements are then used in the stochastic pneumatic inverse model to estimate gas permeability and porosity distributions of soil in sandbox. The one-dimensional sandbox experiments show that the flow directions can significantly affect the final estimation of gas permeability with same measurement locations of two pressure probs, the permeability value can varies in one order. The stochastic pneumatic inverse model can predict well the spatial distributions of gas permeability and fairly well the pattern of porosity in two-dimensional synthetical case with laboratory scale. However, the data from sandbox measurements only result in a fair estimation of permeability ranges. The inversion of porosity distribution for 2-D sandbox is unavailable for the presence of soil distribution.
〔1〕林威州,「土壤氣體抽除法(Soil Vapor Extraction)整治技術探討」,環保技術e報,第39期,經濟部,民國95年10月。
〔2〕Illman, W.A., and Neuman, S.P., “Type-curve interpretation of a cross-hole pneumatic injection test in unsaturated fractured tuff”, Water Resources Research, Vol. 37, No. 3, pp. 583-603, 2001.
〔3〕Illman, W.A., and Neuman, S.P., “Steady-state analyses of cross-hole pneumatic injection tests in unsaturated fractured tuff”, Journal of Hydrology, Vol. 281, pp. 36-54, 2003.
〔4〕Loll, P., and Moldrup, P., “Predicting saturated hydraulic conductivity from air permeability: Application in stochastic water infiltration modeling”, Water Resources Research, Vol. 35, No. 8, pp. 2387-2400, 1999.
〔5〕Poulsen, T. G., Iversen, B. V., Yamaguchi, T., Moldrup, P., and Schjønning, P., “Spatial and temporal dynamics of air permeability in a constructed field”, Soil Science, Vol. 166, No. 3, pp. 153-162, 2001.
〔6〕Phillips, R. E., and Kirkham, D., “Soil compaction in the field and corn growth”, Agronomy Journal, Vol. 54, pp. 29-34, 1962.
〔7〕Moldrup, P., Olesen, T., Komatsu, T., Schjønning, P., and Rolston, D. E., “Tortuosity, diffusivity, and permeability in the soil liquid and gaseous phases”, Soil Science Society of America Journal, Vol. 65, pp. 613-623, 2001.
〔8〕Iverson, B. V., Schjønning, P., Poulsen, T. G., and Moldrup, P., “In situ, on-site and laboratory measurements of soil air permeability:Boundary conditions and measurement scale”, Soil Science, Vol.166, No. 2, pp. 97-106, 2001.
〔9〕Brace, W. F., “Permeability from resistivity and pore shape”, Journal of Geophysical Research, Vol. 82, pp. 3343-3349, 1977.
〔10〕Ball, B. C., “Modelling of soil pores as tubes using gas permeabilities, gas diffusivities and water release”, Journal of Soil Science, Vol. 32, pp. 465-481, 1981.
〔11〕Brooks, R. H., and Corey, A. T., “Properties of porous media affecting fluid flow”, Journal of Irrigation and Drainage Division, Vol. 92, pp. 61-89, 1966.
〔12〕Kirby, J. M., “The influence of soil deformations on the permeability to air”, Journal of Soil Science, Vol. 42, pp. 227-235, 1991.
〔13〕McCarthy, K. P., and Brown, K. W., “Soil gas permeability as influenced by soil gas-filled porosity”, Soil Science Society of American Journal, Vol. 56, pp. 997-1003, 1992.
〔14〕Millington, R.J., and Quirk, J.M., “Permeability of porous solids”, Transactions of the Faraday Society, Vol. 57, pp. 1200-1207, 1961.
〔15〕Moldrup, P., Poulsen, T.G., Schjonning, P., Olesen, T., and Yamaguchi, T., “Gas permeability in undisturbed soils: measurements and predictive models”, Soil Science, Vol. 163, No. 3, pp. 180-189, 1998.
〔16〕Poulsen, T. G., Moldrup, P., Schjonning, P., Massmann, J. W., and Hansen, J. A., “Gas permeability and diffusivity in undisturbed soil: SVE implication”, Journal of Environmental Engineering, Vol. 124, No. 10, pp. 979-986, 1998.
〔17〕Olson, M. S., Tillman, F. D., Choi, J.-W., and Smith J. A., “Comparison of three techniques to measure unsaturated-zone air permeability at Picatinny Arsenal, NJ”, Journal of Contaminant Hydrology, Vol. 53, pp. 1-19, 2001.
〔18〕Roseberg, R. J., and McCoy, E. L., “Measurement of soil macro-pore air permeability”, Soil Science Society of America Journal, Vol. 54, pp. 969-974,1990.
〔19〕Rodeck, S. A., DeVantier, B. A., and Das, B. M., “Air-permeability measurement for soil at low and high pressure”, Journal of Environmental Engineering, Vol. 120, No. 5, pp. 1337-1345, 1994.
〔20〕Springer, D. S., Loaiciga, H. A., Cullen, S. A., and Evertt, L. G., “Air permeability of porous materials under controlled laboratory conditions”, Ground Water, Vol. 36, pp. 558-565, 1998.
〔21〕Samingan, A. S., Leong, E., and Rahardjo, H., “A flexible wall permeameter for measurements of water and air coefficients of permeability of residual soils”, Canadian Geotechnical Journal, Vol. 40, No. 3, pp. 559-574, 2003.
〔22〕Tyner, J. S., Wright, W. C., Lee, J., and Crenshaw, A. D., “A dynamic air permeameter for coarse-textured soil columns and cores”, Vadose Zone Journal, Vol. 4, pp. 428-433, 2005.
〔23〕ASTM, “Standard Test Method for Measurement of Pneumatic Permeability of Partially Saturated Porous Materials by Flowing Air ”, ASTM D6539-00, 2006.
〔24〕Davis, J. M., Wilson, J. L., and Phillips, F. M., “A portable air-mini- permeameter for rapid in situ field measurements”, Ground Water , Vol. 2, pp. 258-266, 1994.
〔25〕Jalbert, M., and Dane, J. H., “A handheld device for intrusive and nonintrusive field measurements of air permeability”, Vadose Zone Journal, Vol. 2, pp. 611-617, 2003.
〔26〕Illman, W. A., “Single- and cross-hole pneumatic injection tests in unsaturated fractured tuffs at the Apache Leap Research Site near Superior, Arizona”, Dep. of Hydrol. and Water Resour., Univ. of Ariz., Tucson, Ph. D. dissertation, 1999.
〔27〕Vesselinove, V. V., Neuman, S. P., and Illman, W. A. , “Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff 1. Methodology and borehole effects”, Water Resources Research, Vol. 37, No. 12, pp. 3001-3017, 2001a.
〔28〕Vesselinove, V. V., Neuman, S. P., and Illman, W. A., “Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff 2. Equivalent parameters, high-resolution stochastic imaging and scale effects”, Water Resources Research, Vol. 37, No. 12, pp. 3019-3041, 2001b.
〔29〕Illman, W. A., and Neuman, S. P., “Type-Curve interpretation of multi-rate singe-hole pneumatic injection tests in unsaturated fractured rock”, Ground Water, Vol. 38, pp. 899-911, 2000.
〔30〕Klinkenberg, L. J., “The permeability of porous media to liquids and gases” , American Petroleum Institute, drilling and production practices, pp. 200-213, 1941.
〔31〕Wu, Y.-S., Pruess, K. and Persoff, P., “Gas Flow in Porous Media with Klinkenberg Effects”, Transport in Porous Media, Vol. 32, No. 1, pp. 117-137, 1998.
〔32〕Ni, C.-F. and Yeh, T.-C. J., “Stochastic inversion of pneumatic cross-hole tests and barometric pressure fluctuation in heterogeneous unsaturated formation”, Advances in Water Resources, Vol. 31, No. 12, pp. 1708-1718, 2008.
〔33〕ASTM, “Standard Test Method for Specific Gravity of Soil”, ASTM D854-83, 1983.
〔34〕沈茂松,實用土壤力學試驗,五版,文笙書局,台北市,民國八十五年。
〔35〕吳文隆,大地工程學,五版,九樺出版社,台北市,民國八十九年。
〔36〕Hsieh, P. A., and Neuman, S. P., “Field determination of the three-dimensional hydraulic conductivity tensor of anisotropic media, 1, Theory”, Water Resource Research, Vol. 21, pp. 1655-1665, 1985.
〔37〕Bear, J., Dynamics of Fluids in Porous Media, American Elsevier Publisher Co., New York, 1972.
〔38〕網路資料:Dynamic Viscosity of Hydrogen. 2008年6月19日,取自http://www.engsolcom.com/Database_Pages/Viscosity_of_Gases_at_High_Pressure.html。