| 研究生: |
丁秉煌 Bin-Huang Ding |
|---|---|
| 論文名稱: |
金屬材料疲勞裂縫延伸壽命之統計分析 |
| 指導教授: |
黃俊仁
Jiun-ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 疲勞裂縫延伸壽命 、蒙地卡羅模擬法 、卡方測試 、數值分析 |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Kc )、幾何形狀(ao )、負荷係數(f )等變數皆視為具有統計分佈型態,分別以不同的機率密度函數及組合進行分析,求取輸入參數之分
佈型態對於壽命分佈之影響,並進一步得到疲勞可靠度。本文內容分
成三部分:第一個部分為在探討裂縫延伸過程中的缺口效應、次序效
應、裂縫閉合效應等對於疲勞壽命之影響。第二個部分則是利用蒙地
卡羅模擬法(MCS)探討五大輸入參數(Ce ,me ,Kc ,ao ,f )對於
疲勞壽命之影響,並加入卡方測試作疲勞壽命分佈函數的檢定。第三
個部份為利用高-低-中值法探討五大輸入參數(Ce ,me ,Kc ,ao ,f )對於裂縫延伸壽命貢獻度的影響。
在本文中我們發現修正效應對疲勞裂縫延伸壽命的影響會隨著
負荷水準的降低而變大,特別是閉合效應和次序效應的修正。另外也
沿用機率破壞力學的觀念,透過蒙地卡羅模擬法與高-低-中值法而得
到各變因中以材料性質e m 對於疲勞壽命的貢獻度最大,其次是負荷係
數f 。再藉由卡方測試法的使用,我們發現其疲勞壽命的分佈情形呈
現韋伯分佈或是對數正規分佈。
﹝1﹞K. C. Kapur, and L. R. Lamberson, ”Reliability in Engineering Design,” John Wiley & Sons, New York, Chap. 9, 1977.
﹝2﹞D. Kececioglu, “Reliability and Life Testing Handbooks,” Vol. 1, PTR Prentice Hall, New Jersey, Chap. 7 and 8, 1993.
﹝3﹞S. S. Rao, “Reliability-Based Design,” McGraw-Hill, Inc, New York, Chap. 6, 1992.
﹝4﹞M. Rausand, and R. Reinertsen, “Fatigue Mechanisms and Damages Models,” IEEE Transactions on Reliability, Vol. 40, No. 5, 1991, pp. 531-536.
﹝5﹞H. Schaebe, “Constructing Lifetime Distributions with Bathtub Shaped Failure Rate from DFR Distributions, Microelectronics and Reliability, Vol. 34, No. 9, 1994, pp.1501-1508.
﹝6﹞J. Davidson, “The Reliability of Mechanical System,” The Institution of Mechanical Engineers, London, Chap. 2, 6 and 9, 1994.
﹝7﹞A. A. Griffith, Philos. Trans. R. Soc. London, Vol. A221, 1920, p.163.
﹝8﹞G. R. Irwin, “Analysis of Stresses and Strains Near The End of a Crack Travrsing a Plate,” Journal of Applied Mechanics, Trans. of ASME, Vol. E24, 1957, pp.361-364.
﹝9﹞P. C. Paris and F. Erdogan, “A Critical Analysis of Crack Propagation Laws,” Journal of Basic Engineering, Trans. of ASME, Vol. D85, 1963, pp. 528-534.
﹝10﹞W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, 1970, pp. 37-45.
﹝10﹞W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, 1970, pp. 37-45.
﹝10﹞W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, 1970, pp. 37-45.
﹝10﹞W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, 1970, pp. 37-45.
﹝10﹞W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, 1970, pp. 37-45.
﹝10﹞W. Elber, “Fatigue Crack Closure Under Cyclic Tension,” Engineering Fracture Mechanics, Vol. 2, 1970, pp. 37-45.
﹝16﹞W. Q. Zhu, Y. K. Lin, Y. Lei, “On Fatigue Crack Growth Under Random Loading,” Engineering Fracture Mechanics, Vol. 43, No. 1, Sep. 1992, pp.1-12.
﹝17﹞M. Liao, Q. X. Yang, “Probabilistic Model For Fatigue Crack Growth,” Engineering Fracture Mechanics, Vol. 43, No. 4, Nov. 1992, pp.651-655.
﹝18﹞D. W. Heoppnre and W. E. Krupp, “Predication of Component Life by Application of Fatigue Crack Growth Knowledge,” Engineering Fracture Mechanics, Vol. 6, 1974, p. 47.
﹝19﹞J. W. Barsom, “Fatigue Crack Propagation in steels of Various Yield Strengths”, Transaction ASME, Journal of Engineering Industrial, Series B, No. 4, November 1971, p. 1190.
﹝19﹞J. W. Barsom, “Fatigue Crack Propagation in steels of Various Yield Strengths”, Transaction ASME, Journal of Engineering Industrial, Series B, No. 4, November 1971, p. 1190.
﹝21﹞T. R. Gurney, “Fatigue of Welded Structures,” Cambridge University, 2nd ed. 1979, p. 62.
﹝22﹞K. N. Morman, Jr. and R. G. Dubensky, “Predicting Fatigue Crack Retardation Under Single and Intermittent Overloading,” Cracks and Fracture, ASME STP 601, 1976, pp. 245-261.
﹝23﹞R. Sunder, S. A. Seetharam and T. A. Bhaskaran, “Cycle Counting for Fatigue Crack Growth Analysis”, International Journal of Fatigue 6, No. 3, 1984, pp.147-156.
﹝24﹞M. Matsuishi and T. Endo, “Fatigue of Metals Subjected to Varying Stress,” paper presented to Japan Society of Engineers, Fukuoka, Japan, Mar. 1968.
﹝25﹞賴耿陽, “產品壽命管制技術,” 復漢出版社
﹝26﹞J. M. Hammersley and D. C. Handscomb, “Monte Carlo Method,” John Wiley and Sons, Inc., New York, 1964.
﹝27﹞R. Y. Rubinstein, “Simulation and the Monte Carlo Method,” John Wiley and Sons, Inc., New York, 1981.
﹝28﹞林清山, “心理與教育統計學,” 東華書局
﹝29﹞H. O. Fuchs and R. I. Stephens, “Metal Fatigue in Engineering,” Wiley Interscience, New York, 1980.
﹝30﹞D. F. Socie, “Estimating Fatigue Crack Initiation and Propagation Lives in Notched Plates under Variable Load Histories,” PH.D. Thesis, University of Illinois, 1977.
﹝30﹞D. F. Socie, “Estimating Fatigue Crack Initiation and Propagation Lives in Notched Plates under Variable Load Histories,” PH.D. Thesis, University of Illinois, 1977.
﹝30﹞D. F. Socie, “Estimating Fatigue Crack Initiation and Propagation Lives in Notched Plates under Variable Load Histories,” PH.D. Thesis, University of Illinois, 1977.
﹝33﹞劉宏毅, “金屬受隨機負載作用下之疲勞分析模式與探討,” 國立台灣大學機械工程學研究所博士論文, 1998.
﹝33﹞劉宏毅, “金屬受隨機負載作用下之疲勞分析模式與探討,” 國立台灣大學機械工程學研究所博士論文, 1998.
﹝35﹞A. Bruckner, “Scatter of Fracture Toughness in Plates of the Aluminum Alloy 7475-T7351,” The 1984 Pressure Vessel and Piping Conference San Antonio, Texas, Jun. 1984, p.116.
﹝35﹞A. Bruckner, “Scatter of Fracture Toughness in Plates of the Aluminum Alloy 7475-T7351,” The 1984 Pressure Vessel and Piping Conference San Antonio, Texas, Jun. 1984, p.116.
﹝35﹞A. Bruckner, “Scatter of Fracture Toughness in Plates of the Aluminum Alloy 7475-T7351,” The 1984 Pressure Vessel and Piping Conference San Antonio, Texas, Jun. 1984, p.116.
﹝38﹞L. J. Bain, “Statistical Analysis of Reliability and Life-Testing Models,” Marcel Dekker, Inc, New York and Basel. ISBN:0-8247-6665-2, Vol. 24, 1978, p.302.