跳到主要內容

簡易檢索 / 詳目顯示

研究生: 艾蒂拉
Edlira Xhafaj
論文名稱: Advancing Probabilistic Seismic Hazard Assessment for Albania (ALhaz2024)
指導教授: 馬國鳳
Kuo-Fong Ma
詹忠翰
Chung-Han Chan
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 197
中文關鍵詞: 機率式地震危害度分析
外文關鍵詞: Probabilistic Seismic Hazard Assessment
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中利用擴充均質地震目錄(homogeneous catalog)與三個孕震震源模型(包括隱沒帶、區域震源、活動斷層)與阿爾巴尼亞(Albania)機率性地震危害度評估重新分析。此種均質地震目錄的分析方法,是之前的研究中未曾考慮的。此擴充地震目錄涵蓋36.0°N46.0°N和16.0°E24.0°E之研究區域,時間尺度上則涵蓋122年從1900年至2022年的地震事件(共計17679次規模大於3.5的地震)。在此架構下,三個孕震震源模型共包括63個區域震源、275條活動斷層,以及兩個隱沒帶系統。此兩個隱沒帶系統分別為海倫島弧(Hellenic Arc)與卡拉布里亞島弧(Calabrian Arc)。本研究的主要特點在於納入擴充地震目錄與隱沒帶震源模型,並基於資料驅動的方法選取地震動模型(GMMs),其中包含最新的全球地震動模型。地震危害度分佈圖以地表加速度峰值(PGA)和譜加速度(SA)的形式呈現,並考慮對應50年內10%和2%的超越概率(PoE),即回歸期為475年和2475年。本研究之結果是根據歐洲耐震規範Eurocode8(EC8)所設定之標準參考場地條件,考慮以上部30公尺土壤層的平均剪力波波速度(Vs30)大於800 m/s,並利用Vs30地圖對地震動放大場址分類。此研究分析阿爾巴尼亞八個城市的地震危害度曲線圖與均布危害度反應譜,並以解構分析判斷不同孕震模型、地震規模與距離之關係、地振動之不確定性對這些選定城市的危害度貢獻。結果顯示,位於阿爾巴尼亞西部沿海的城市,包含杜勒斯(Durres)、非爾(Fier)、夫羅勒(Vlora)和薩蘭達(Saranda),以及首都地拉那(Tirana),面臨高的地震危害度。此研究中所呈現的危害度分佈圖與前人研究之區域性尺度分佈圖結果相當。危害度分佈圖可作為建立新的國家尺度之孕震構造分區的參考指標,並納入城市規劃與災害之準備,也可作為未來地震風險研究的輸入。這也意味著相關主管部門應考慮此研究之結果,在更可靠和現實的基礎上改進現有的設計規範,以提高國家建築的安全水平。


    In this study, the probabilistic seismic hazard assessment for Albania was obtained by
    implementing the extended homogeneous catalog and three source models, including the subduction zone (along with area sources and active faults), which has not been considered in prior studies. Albania’s earthquake catalog is expanded, covering a study area bounded by 36.0◦–46.0◦N latitude and 16.0◦–24.0◦E longitude for the 122 years time period from 1900 to 2022 (counting 17,679 earthquakes with magnitude ≥ 3.5). The three main seismogenic source models consist of 63 area sources, 275 active faults, and two subduction systems represented by the Hellenic and Calabrian Arcs. The main features of this analysis are the inclusion of the extended catalog, implementation of subduction sources, and the data-driven approach on selecting the ground motion models (GMMs), which includes recent global models. The ground motion hazard maps are presented in terms of peak ground acceleration (PGA) and spectral acceleration (SA), for 10% and 2% probability of exceedance (PoE) in 50 years, corresponding to 475 and 2475 years return period. The results are carried out for rock conditions with average velocity in the upper 30 m of soil section Vs30≥800 m/s, the standard reference site conditions used by the European seismic code EC8 (Eurocode 8 (CEN, 2004)), and counting the ground motion amplification site classes based on Vs30 map (Wald & Allen, 2007). Hazard curves and uniform hazard spectra are estimated for eight cities in Albania, while the disaggregation analysis is conducted to determine the contribution of each seismic source, and magnitude-distance including the range of ground motion uncertainties (epsilon) to the hazard for those eight selected cities. The findings underscore high seismic hazard in cities situated along the western coast of Albania, including Durres, Fier, Vlora, and Saranda, as well as the capital city, Tirana. The hazard maps obtained are comparable with the results on a regional scale. The hazard maps can be a reference indicator to establish a new regulatory national seismic zonation, to be considered for urban planning and disaster preparedness, and be used as an input for future seismic risk studies. This implies that the competent authorities should take into consideration the obtained results to improve the existing design code on a more reliable and realistic basis in order to increase the safety level of construction in the country.

    Contents Chinese Abstract i English Abstract i Acknowledgments iii Table of Contents vi List of Figures viii List of Tables xxiii List of Abbreviations xxvi 1 General Introduction 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Previous studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.1 Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2.2 Balkan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Albania . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 Earthquake catalog and analyses 15 2.1 Earthquake catalog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.1.1 Historical seismicity . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1.2 Instrumental seismicity . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Magnitude unification/harmonization . . . . . . . . . . . . . . . . . . . . 25 2.3 Earthquake catalog declustering . . . . . . . . . . . . . . . . . . . . . . . 28 2.3.1 Window declustering methods . . . . . . . . . . . . . . . . . . . . 28 2.3.2 Nearest-Neighbor-Distance (NND) declustering method . . . . . . . 31 2.4 Magnitude of completeness (Mc) . . . . . . . . . . . . . . . . . . . . . . . 32 2.4.1 The Stepp (1972) Completeness . . . . . . . . . . . . . . . . . . . 34 2.4.2 Maximum Curvature Completeness . . . . . . . . . . . . . . . . . 36 2.4.3 b-value Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 Assessment of Gutenberg & Richter (1944) parameters . . . . . . . . . . 39 2.5.1 Estimating b-value . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5.2 Spatial Variation in b-value . . . . . . . . . . . . . . . . . . . . . . 41 2.5.3 Maximum Magnitude (Mmax) . . . . . . . . . . . . . . . . . . . . 43 2.6 Seismicity Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.6.1 Gutenberg-Richter Relation . . . . . . . . . . . . . . . . . . . . . 44 2.6.2 The Truncated Gutenberg-Richter Relation . . . . . . . . . . . . . 46 3 Seismogenic Source Models 49 3.1 Background Seismicity Model . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.1 Area Sources Model . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.1.2 Smoothing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.2 Active Faults Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 3.3 Subduction Sources Model . . . . . . . . . . . . . . . . . . . . . . . . . . 72 3.4 Seismogenic Sources Logic Tree . . . . . . . . . . . . . . . . . . . . . . . 77 4 Ground Motion Models 79 4.1 Introduction to the Case Study - The 2019 Durres, earthquake sequence . 80 4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2.1 Strong motion data of 2019 Mw6.4 Durres earthquake sequence . 83 4.2.2 Macroseismic Data – “Did you feel it?” . . . . . . . . . . . . . . . 85 4.3 GMMs Selection and Ranking . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.1 Candidate GMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 4.3.2 Comparing Observed and Predicted Ground-motion Of Selected GMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.4 Comparing DYFI intensities and predicted ground-motion . . . . . . . . 95 4.5 GMMs Logic Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 5 Model Implementation and Hazard Calculations 101 5.1 Seismic Hazard Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.2 Hazard Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3 Uniform Hazard Spectra (UHS) . . . . . . . . . . . . . . . . . . . . . . . 107 5.4 Disaggregation of the Seismic Hazard . . . . . . . . . . . . . . . . . . . . 109 5.5 Comparison with other models . . . . . . . . . . . . . . . . . . . . . . . . 113 6 Conclusions and recommendations for future research 117 6.1 Chapter II - Seismicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.2 Chapter III - Source Models . . . . . . . . . . . . . . . . . . . . . . . . . 119 6.3 Chapter IV - Ground Motion Models . . . . . . . . . . . . . . . . . . . . 120 6.4 Chapter V - Hazard Results . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.5 Limitations of the Research . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Bibliography 124 A Appendix 149 A.1 Appendix – Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 A.2 Appendix – Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    Abrahamson, N. A., Kuehn, N. M., Walling, M., & Landwehr, N. (2019).
    Probabilistic Seismic Hazard Analysis in California Using Nonergodic Ground-
    Motion Models. Bulletin of the Seismological Society of America, 109 (4), 1235–
    1249. https://doi.org/10.1785/0120190030
    • Abrahamson, N., Gregor, N., & Addo, K. (2016). BC Hydro Ground Motion
    Prediction Equations for Subduction Earthquakes. Earthquake Spectra, 32 (1),
    23–44. https://doi.org/10.1193/051712EQS188MR
    • Abrahamson, N., & Gülerce, Z. (2020). Regionalized Ground-Motion Models
    for Subduction Earthquakes Based on the NGA-SUB Database (PEER Reports
    PEER Report No. 2020/25; PEER Reports, p. 237). Pacific Earthquake
    Engineering Research Center, University of California, Berkeley, CA.
    https://doi.org/10.55461/SSXE9861
    • Aden-Antoniów, F., Frank, W. B., & Seydoux, L. (2022). An Adaptable
    Random Forest Model for the Declustering of Earthquake Catalogs.
    Journal of Geophysical Research: Solid Earth, 127 (2), e2021JB023254.
    https://doi.org/10.1029/2021JB023254
    • Akaike, H. (1974). A new look at the statistical model identification.
    IEEE Transactions on Automatic Control, 19 (6), 716–723.
    https://doi.org/10.1109/TAC.1974.1100705
    • Aki, K. (1965). Maximum Likelihood Estimate of b in the Formula logN=abM
    and its Confidence Limits. Bulletin of the Earthquake Research Institute,
    University of Tokyo, 43 (2), 237–239. https://doi.org/10.15083/0000033631
    • Aki, K. (1972). Earthquake mechanism. Tectonophysics, 13 (1), 423–446.
    https://doi.org/10.1016/0040-1951(72)90032-7
    • Akkar, S., & Bommer, J. J. (2010). Empirical Equations for the Prediction
    of PGA, PGV, and Spectral Accelerations in Europe, the Mediterranean Region,
    and the Middle East. Seismological Research Letters, 81 (2), 195–206.
    https://doi.org/10.1785/gssrl.81.2.195
    • Akkar, S., Sandıkkaya, M. A., Şenyurt, M., Azari Sisi, A., Ay, B. Ö., Traversa,
    P., Douglas, J., Cotton, F., Luzi, L., Hernandez, B., & Godey, S. (2014).
    Reference database for seismic ground-motion in Europe (RESORCE). Bulletin
    of Earthquake Engineering, 12 (1), 311–339. https://doi.org/10.1007/s10518-013-
    9506-8
    Alam, M., Alberto, Y., Aranha, C., Diaz-Fanas, G., Djima, W., Gartner,
    M., Hassan, W., Isufi, B., & Kenawy, M. (2019). EERI Virtual Earthquake
    Reconnaissance Team (VERT): Phase 1 Response to M6.4 Albania Earthquake
    November 26, 2019.
    • Albini, P., Musson, R. M. W., Rovida, A., Locati, M., Gomez Capera, A. A., &
    Viganò, D. (2014). The Global Earthquake History. Earthquake Spectra, 30 (2),
    607–624. https://doi.org/10.1193/122013EQS297
    • Aliaj, S. (1997). Alpine geological evolution of Albania AJNTS 1997 (3): 69-81.
    3, 69–81.
    • Aliaj, S., Adams, J., Halchuk, S., Sulstarova, E., Peçi, V., &
    Muço, B. (2004). Probabilistic seismic hazard maps for Albania. 14.
    https://doi.org/10.4095/226354
    • Aliaj, S., Kociu, S., Muco, B., & Sulstarova, E. (2010). Seismicity, seismotectonics
    and seismic hazard assessment in Albania (Vol. 1). The Academy of Sciences
    of Albania.
    • Allen, T. I., & Hayes, G. P. (2017). Alternative Rupture-Scaling Relationships
    for Subduction Interface and Other Offshore Environments.
    Bulletin of the Seismological Society of America, 107 (3), 1240–1253.
    https://doi.org/10.1785/0120160255
    • Allen, T. I., & Wald, D. J. (2009). Evaluation of Ground-Motion Modeling
    Techniques for Use in Global ShakeMap (Open-File Report). U.S. Department
    of the Interior U.S. Geological Survey.
    • Ambraseys, N. N., Simpson, K. A., & Bommer, J. J. (1996). Prediction
    of Horizontal Response Spectra in Europe. Earthquake Engineering &
    Structural Dynamics, 25 (4), 371–400. https://doi.org/10.1002/(SICI)1096-
    9845(199604)25:4<371::AID-EQE550>3.0.CO;2-A
    • Anderson, J. G., & Brune, J. N. (1999). Probabilistic Seismic Hazard Analysis
    without the Ergodic Assumption. Seismological Research Letters, 70 (1), 19–28.
    https://doi.org/10.1785/gssrl.70.1.19
    • Anderson, J. G., & Luco, J. E. (1983). Consequences of slip rate constraints
    on earthquake occurrence relations. Bulletin of the Seismological Society of
    America, 73 (2), 471–496. https://doi.org/10.1785/BSSA0730020471
    • Andonov, A., Baballëku, M., Baltzopoulos, G., Blagojević, N., Bothara, J.,
    Brûlé, S., Brzev, S., Carydis, P., Duni, L., Dushi, E., Freddi, F., Gentile, R.,
    Giarlelis, C., Greco, F., Guri, M., Isufi, B., Koci, R., Lekkas, E., Marinković, M.,
    & Veliu, E. (2022). EERI Earthquake Reconnaissance Report—M6.4 Albania
    Earthquake on November 26 2019. https://doi.org/10.13140/RG.2.2.15321.60008
    • Atkinson, G. M., & Boore, D. M. (2003). Empirical Ground-Motion Relations
    for Subduction-Zone Earthquakes and Their Application to Cascadia and Other
    Regions. Bulletin of the Seismological Society of America, 93 (4), 1703–1729.
    https://doi.org/10.1785/0120020156
    Atkinson, G. M., & Kaka, S. I. (2007). Relationships between Felt Intensity
    and Instrumental Ground Motion in the Central United States and
    California. Bulletin of the Seismological Society of America, 97 (2), 497–510.
    https://doi.org/10.1785/0120060154
    • Atkinson, G. M., & Wald, D. J. (2007). “Did You Feel It?” Intensity Data:
    A Surprisingly Good Measure of Earthquake Ground Motion. Seismological
    Research Letters, 78 (3), 362–368. https://doi.org/10.1785/gssrl.78.3.362
    • Atkinson, G. M., Worden, C. B., & Wald, D. J. (2014). Intensity Prediction
    Equations for North America. Bulletin of the Seismological Society of America,
    104 (6), 3084–3093. https://doi.org/10.1785/0120140178
    • Aung, L. T., Martin, S. S., Wang, Y., Wei, S., Myo Thant, Khaing Nyein
    Htay, Hla Myo Aung, Tay Zar Kyaw, Soe Min, Kaung Sithu, Tun Naing, Saw
    Ngwe Khaing, Kyaw Moe Oo, Suresh, G., Chen, W., Phyo Maung Maung,
    & Gahalaut, V. (2019). A comprehensive assessment of ground motions from
    two 2016 intra-slab earthquakes in Myanmar. Tectonophysics, 765, 146–160.
    https://doi.org/10.1016/j.tecto.2019.04.016
    • Baiesi, M., & Paczuski, M. (2004). Scale-free networks of earthquakes
    and aftershocks. Physical Review E, 69 (6), 066106.
    https://doi.org/10.1103/PhysRevE.69.066106
    • Baker, J. (2008). An Introduction to Probabilistic Seismic Hazard Analysis
    (PSHA) (Vol. 1).
    • Baker, J., Bradley, B., & Stafford, P. (2021). Seismic Hazard and Risk Analysis.
    Cambridge University Press. https://doi.org/10.1017/9781108425056
    • Baker, J. W. (2013). Introduction to Probabilistic Seismic Hazard Analysis.
    White Paper Version 2.0, 79.
    • Bakun, W. H., & Wentworth, C. M. (1997). Estimating earthquake location and
    magnitude from seismic intensity data. Bulletin of the Seismological Society of
    America, 87 (6), 1502–1521. https://doi.org/10.1785/BSSA0870061502
    • Basili, R., Danciu, L., Beauval, C., Sesetyan, K., Vilanova, S., Adamia, S.,
    Arroucau, P., Atanackov, J., Baize, S., Canora, C., Caputo, R., Carafa, M.
    M. C., Cushing, M., Custodio, S., Demircioğlu, T., Duarte, J., Ganas, A.,
    Garcia Moreno, J., Gomez de la Pena, L., . . . Zupančič, P. (2022). European
    Fault-Source Model 2020 (EFSM20): Online data on fault geometry and activity
    parameters. https://doi.org/10.13127/efsm20
    • Basili, R., & Kastelic, V. (2011). D3.4 – Database of active faults and seismogenic
    sources. Istituto Nazionale di Geofisica e Vulcanologia (INGV).
    • Basili, R., Kastelic, V., Demircioglu, M. B., Garcia Moreno, D., Nemser, E. S.,
    Petricca, P., Sboras, S. P., Besana-Ostman, G. M., Cabral, J., Camelbeeck, T.,
    Caputo, R., Danciu, L., Domaç, H., Fonseca, J. F. de B. D., García-Mayordomo,
    J., Giardini, D., Glavatovic, B., Gulen, L., Ince, Y., . . . Wössner, J. (2013).
    European Database of Seismogenic Faults (EDSF). Istituto Nazionale di Geofisica
    e Vulcanologia (INGV). https://edsf13.ingv.it/
    Bazzurro, P., & Cornell, C. A. (1999). Disaggregation of seismic hazard.
    Bulletin of the Seismological Society of America, 89 (2), 501–520.
    https://doi.org/10.1785/BSSA0890020501
    • Bender, B., & Campbell, K. (1989). A note on the selection of minimum
    magnitude for use in seismic hazard analysis. Bulletin of the Seismological
    Society of America, 79, 199–204. https://doi.org/10.1785/BSSA0790010199
    • Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., & Augliera,
    P. (2014). Pan-European ground-motion prediction equations for the average
    horizontal component of PGA, PGV, and 5 %-damped PSA at spectral periods
    up to 3.0 s using the RESORCE dataset. Bulletin of Earthquake Engineering,
    12 (1), 391–430. https://doi.org/10.1007/s10518-013-9525-5
    • Bindi, D., Pacor, F., Luzi, L., Massa, M., & Ameri, G. (2009). The Mw 6.3,
    2009 L’Aquila earthquake: Source, path and site effects from spectral analysis
    of strong motion data. Geophysical Journal International, 179 (3), 1573–1579.
    https://doi.org/10.1111/j.1365-246X.2009.04392.x
    • Bommer, J. J., & Abrahamson, N. A. (2006). Why Do Modern Probabilistic
    Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates?
    Bulletin of the Seismological Society of America, 96 (6), 1967–1977.
    https://doi.org/10.1785/0120060043
    • Bommer, J. J., & Crowley, H. (2017). The Purpose and Definition of the Minimum
    Magnitude Limit in PSHA Calculations. Seismological Research Letters,
    88 (4), 1097–1106. https://doi.org/10.1785/0220170015
    • Bommer, J. J., Douglas, J., Scherbaum, F., Cotton, F., Bungum, H., &
    Fäh, D. (2010). On the Selection of Ground-Motion Prediction Equations
    for Seismic Hazard Analysis. Seismological Research Letters, 81 (5), 783–793.
    https://doi.org/10.1785/gssrl.81.5.783
    • Boore, D. M., & Atkinson, G. M. (2008). Ground-Motion Prediction Equations
    for the Average Horizontal Component of PGA, PGV, and 5%-Damped PSA at
    Spectral Periods between 0.01 s and 10.0 s. Earthquake Spectra, 24 (1), 99–138.
    https://doi.org/10.1193/1.2830434
    • Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014).
    NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA
    for Shallow Crustal Earthquakes. Earthquake Spectra, 30 (3), 1057–1085.
    https://doi.org/10.1193/070113EQS184M
    • Bradley, B. A. (2011). Empirical correlation of PGA, spectral accelerations
    and spectrum intensities from active shallow crustal earthquakes.
    Earthquake Engineering & Structural Dynamics, 40 (15), 1707–1721.
    https://doi.org/10.1002/eqe.1110
    • BSHAP. (2011). Harmonization of seismic hazard maps for the western Balkan
    (BSHAP) (p. 67) [NATO SfP Project No. 983054]. NATO.
    • Bungum, H. (2007). Numerical modelling of fault activities. Computers &
    Geosciences, 33 (6), 808–820. https://doi.org/10.1016/j.cageo.2006.10.011
    Burton, P. W., Xu, Y., Qin, C., Tselentis, G.-A., & Sokos, E. (2004). A
    catalogue of seismicity in Greece and the adjacent areas for the twentieth century.
    Tectonophysics, 390 (1), 117–127. https://doi.org/10.1016/j.tecto.2004.03.020
    • Cao, A., & Gao, S. S. (2002). Temporal variation of seismic b-values beneath
    northeastern Japan island arc. Geophysical Research Letters, 29 (9), 48-1-48–3.
    https://doi.org/10.1029/2001GL013775
    • Capera, A. A. G., Albarello, D., & Gasperini, P. (2007). Deliverable D11
    Aggiornamento relazioni fra l’intensità macrosismica e PGA (p. 23) [Technical
    Report]. Istituto Nazionale di Geofisica e Vulcanologia.
    • CATMonitor. (2020). Historic Earthquakes in Albania [dataset].
    https://catmonitor.com/catmonitor/historic-earthquakes-in-albania/?lang=en
    • Cauzzi, C., Faccioli, E., Vanini, M., & Bianchini, A. (2015). Updated predictive
    equations for broadband (0.01–10 s) horizontal response spectra and peak ground
    motions, based on a global dataset of digital acceleration records. Bulletin of
    Earthquake Engineering, 13 (6), 1587–1612. https://doi.org/10.1007/s10518-014-
    9685-y
    • CEN. (2004). Eurocode 8: Design of structures for earthquake resistance—Part
    1: General rules, seismic actions and rules for buildings.
    • Chan, C.-H., Ma, K.-F., Shyu, J. B., Lee, Y.-T., Wang, Y.-J., Gao, J.-
    C., Yen, Y.-T., & Rau, R.-J. (2020). Probabilistic seismic hazard assessment
    for Taiwan: TEM PSHA2020. Earthquake Spectra, 36, 875529302095158.
    https://doi.org/10.1177/8755293020951587
    • Chiou, B. S.-J., & Youngs, R. R. (2014). Update of the Chiou and
    Youngs NGA Model for the Average Horizontal Component of Peak
    Ground Motion and Response Spectra. Earthquake Spectra, 30 (3), 1117–1153.
    https://doi.org/10.1193/072813EQS219M
    • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin
    of the Seismological Society of America, 58 (5), Article 5.
    https://doi.org/10.1785/BSSA0580051583
    • Cotton, F., Scherbaum, F., Bommer, J. J., & Bungum, H. (2006). Criteria for
    Selecting and Adjusting Ground-Motion Models for Specific Target Regions:
    Application to Central Europe and Rock Sites. Journal of Seismology, 10 (2),
    137–156. https://doi.org/10.1007/s10950-005-9006-7
    • Cua, G., Wald, D. J., Allen, T. I., Garcia, D., Worden, C. B., Gerstenberger, M.,
    Lin, K., & Marano, K. (2010). “Best Practices” for Using Macroseismic Intensity
    and Ground Motion Intensity Conversion Equations for Hazard and Loss Models
    in GEM1 (GEM Technical Report 2010-4). GEM Foundation, Pavia, Italy.
    • Danciu, L., Nandan, S., Reyes, C., Basili, R., Weatherill, G., Beauval, C., Rovida,
    A., Vilanova, S., Sesetyan, K., Bard, P.-Y., Cotton, F., Wiemer, S., & Giardini,
    D. (2021). The 2020 update of the European Seismic Hazard Model: Model
    Overview. EFEHR Technical Report 001, v1.0.0. https://doi.org/10.12686/a15
    Danciu, L., Sesetyan, K., Demircioglu, M., Gulen, L., Zare, M., Basili, R., Elias,
    A., Adamia, S., Tsereteli, N., Yalçin, H., Utkucu, M., Khan, A., Sayab, M., Hessami,
    K., Rovida, A., Stucchi, M., Burg, J.-P., Karakhanian, A., Babayan, H., &
    Giardini, D. (2018). The 2014 Earthquake Model of the Middle East: Seismogenic
    sources. Bulletin of Earthquake Engineering, 16. https://doi.org/10.1007/s10518-
    017-0096-8
    • Danciu, L., Sesetyan, K., Demircioglu, M., Gulen, L., Zare, M., Basili, R., Elias,
    A., Adamia, S., Tsereteli, N., Yalçin, H., Utkucu, M., Khan, A., Sayab, M., Hessami,
    K., Rovida, A., Stucchi, M., Burg, J.-P., Karakhanian, A., Babayan, H., &
    Giardini, D. (2018). The 2014 Earthquake Model of the Middle East: Seismogenic
    sources. Bulletin of Earthquake Engineering, 16. https://doi.org/10.1007/s10518-
    017-0096-8
    • de Rossi, M. (1874). Programma dell’osservatorio ed archivio centrale geodinamico
    presso il R. Comitato Geologico d’Italia. In Bullettino del vulcanismo
    italiano e di geodinamica generale (p. 128). Tip. della pace di F . Cuggiani.
    http://archive.org/details/bullettinodelvu02italgoog
    • Delavaud, E., Cotton, F., Akkar, S., Scherbaum, F., Danciu, L., Beauval, C.,
    Drouet, S., Douglas, J., Basili, R., Sandikkaya, M. A., Faccioli, E., Theodoulidis,
    N., Delavaud, E., & Segou, M. (2012). Toward a Ground-Motion Logic Tree for
    Probabilistic Seismic Hazard Assessment in Europe. Journal of Seismology, 16,
    451–473. https://doi.org/10.1007/s10950-012-9281-z
    • Di Bona, M. (2016). A Local Magnitude Scale for Crustal Earthquakes
    in Italy. Bulletin of the Seismological Society of America, 106 (1), 242–258.
    https://doi.org/10.1785/0120150155
    • Di Bucci, D., & Angeloni, P. (2013). Adria seismicity and seismotectonics:
    Review and critical discussion. Marine and Petroleum Geology, 42, 182–190.
    https://doi.org/10.1016/j.marpetgeo.2012.09.005
    • Di Giacomo, D., Harris, J., Villaseñor, A., Storchak, D. A., Engdahl, E.
    R., & Lee, W. H. K. (2015). ISC-GEM: Global Instrumental Earthquake
    Catalogue (1900–2009), I. Data collection from early instrumental seismological
    bulletins. Physics of the Earth and Planetary Interiors, 239, 14–24.
    https://doi.org/10.1016/j.pepi.2014.06.003
    • Di Giacomo, D., & Storchak, D. A. (2016). A scheme to set preferred
    magnitudes in the ISC Bulletin. Journal of Seismology, 20 (2), 555–567.
    https://doi.org/10.1007/s10950-015-9543-7
    • Douglas, J. (2022). Ground motion prediction equations 1964-2021 (p. 679).
    Department of Civil and Environmental Engineering University of Strathclyde.
    http://gmpe.org.uk/gmpereport2014.pdf
    • Duni, L., Kuka, S., & Kuka, N. (2010). Local relations for converting Ml to Mw
    in Southern-Western Balkan region. Acta Geodaetica et Geophysica Hungarica,
    45 (3), 317–323. https://doi.org/10.1556/ageod.45.2010.3.6
    • Duni, L., & Theodoulidis, N. (2019). Short note on the November 26,2019,
    Durres (Albania) M6.4 earthquake: Strong ground motion with emphasis in Durres city. 15. http://www.ssis.org.al/wp-content/uploads/2020/01/Short-
    Note_EMSC_Duni-Theodoulidis-1.pdf
    Dushi, E. (2009). A Revised Parametric Model of Local Magnitude for Albanian
    Seismological Network. cp. https://doi.org/10.3997/2214-4609-pdb.126.6287
    • Engdahl, E. R., & Gunst, R. H. (1966). Use of a high speed computer for the preliminary
    determination of earthquake hypocenters. Bulletin of the Seismological
    Society of America, 56 (2), 325–336. https://doi.org/10.1785/BSSA0560020325
    • Faccioli, E., & Cauzzi, C. (2006, March 9). Macroseismic intensities for seismic
    scenarios estimated from instrumentally based correlations. First European
    Conference on Earthquake Engineering and Seismology, Geneva, Switzerland,
    3-8 September 2006. https://doi.org/10.13140/RG.2.1.3984.2641
    • Frankel, A. (1995). Mapping Seismic Hazard in the Central and Eastern
    United States. Seismological Research Letters, 66 (4), Article 4.
    https://doi.org/10.1785/gssrl.66.4.8
    • Frankel, A., Mueller, C. S., Barnhard, T., Perks, D., Leyendecker, E.,
    Dickman, N., Hanson, S., & Hopper, M. (1997). Seismic-Hazard Maps for
    California, Nevada, and Western Arizona/Utah. USGS Numbered Series.
    https://doi.org/10.3133/ofr97130
    • Frasheri, A., Bushati, S., & Bare, V. (2009). Geophysical outlook on structure
    of the Albanides. Journal of Balkan Geophysical Society, 12 (1), p.9-30.
    • Freddi, F., Novelli, V., Gentile, R., Veliu, E., Andreev, S., Andonov, A.,
    Greco, F., & Zhuleku, E. (2021). Observations from the 26th November
    2019 Albania earthquake: The earthquake engineering field investigation
    team (EEFIT) mission. Bulletin of Earthquake Engineering, 19 (5), 2013–2044.
    https://doi.org/10.1007/s10518-021-01062-8
    • Frohlich, C., & Davis, S. D. (1993). Teleseismic b values; Or, much ado
    about 1.0. Journal of Geophysical Research: Solid Earth, 98 (B1), 631–644.
    https://doi.org/10.1029/92JB01891
    • Fujiwara, H. (2014). Seismic Hazard Maps for Japan (pp. 1–28).
    https://doi.org/10.1007/978-3-642-27737-5_617-1
    • Fundo, A., Ll, D., Kuka, S., Begu, E., & Kuka, N. (2012). Probabilistic seismic
    hazard assessment of Albania. Acta Geodaetica et Geophysica Hungarica, 47 (4),
    465–479. https://doi.org/10.1556/ageod.47.2012.4.7
    • Ganas, A., & Parsons, T. (2009a). Three-dimensional model of Hellenic Arc
    deformation and origin of the Cretan uplift. Journal of Geophysical Research:
    Solid Earth, 114 (B6). https://doi.org/10.1029/2008JB005599
    • Ganas, A., & Parsons, T. (2009b). Three-dimensional model of Hellenic Arc
    deformation and origin of the Cretan uplift. Journal of Geophysical Research:
    Solid Earth, 114 (B6). https://doi.org/10.1029/2008JB005599
    • Ganas, A., Tsironi, V., Cannavo, F., Briole, P., Elias, P., Valkaniotis, S.,
    Koukouvelas, I., & Sokos, E. (2020). Co-seismic deformation and preliminaryfault model of the M6.4 Durres (Albania) Nov. 26, 2019 earthquake, based on
    space geodesy observations. 8478. https://doi.org/10.5194/egusphere-egu2020-
    8478
    • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in Southern
    California, with aftershocks removed, Poissonian? Bulletin of the Seismological
    Society of America, 64 (5), 1363–1367. https://doi.org/10.1785/BSSA0640051363
    • GEM. (2022). The OpenQuake-engine User Manual. Global Earthquake
    Model (GEM) Open-Quake Manual for Engine version 3.13.0. 204.
    https://doi.org/10.13117/GEM.OPENQUAKE.MAN.ENGINE.3.13.0
    • Gerstenberger, M. C., Marzocchi, W., Allen, T., Pagani, M., Adams, J., Danciu,
    L., Field, E. H., Fujiwara, H., Luco, N., Ma, K.-F., Meletti, C., & Petersen,
    M. D. (2020). Probabilistic Seismic Hazard Analysis at Regional and National
    Scales: State of the Art and Future Challenges. Reviews of Geophysics, 58 (2),
    e2019RG000653. https://doi.org/10.1029/2019RG000653
    • Giardini, D. (1999). The Global Seismic Hazard Assessment Program (GSHAP)-
    1992/1999. Annali Di Geofisica, 42. https://doi.org/10.4401/ag-3780
    • Giardini, D., Wiemer, S., Fäh, D., & Deichmann, N. (2004). Seismic Hazard
    Assessment of Switzerland, 2004 (p. 95) [Technical report]. ETH Zurich.
    • Giardini, D., Wössner, J., & Danciu, L. (2014). Mapping Europe’s Seismic
    Hazard. Eos, Transactions American Geophysical Union, 95 (29), 261–262.
    https://doi.org/10.1002/2014EO290001
    • Goltz, J. D., Park, H., Nakano, G., & Yamori, K. (2020). Earthquake
    ground motion and human behavior: Using DYFI data to assess behavioral
    response to earthquakes. Earthquake Spectra, 36 (3), 1231–1253.
    https://doi.org/10.1177/8755293019899958
    • Govorčin, M., Wdowinski, S., Matoš, B., & Funning, G. J. (2020). Geodetic
    Source Modeling of the 2019 Mw 6.3 Durrës, Albania, Earthquake: Partial
    Rupture of a Blind Reverse Fault. Geophysical Research Letters, 47 (22),
    e2020GL088990. https://doi.org/10.1029/2020GL088990
    • Grigoriadis, V. N., Tziavos, I. N., Tsokas, G. N., & Stampolidis, A. (2016).
    Gravity data inversion for Moho depth modeling in the Hellenic area. Pure
    and Applied Geophysics, 173 (4), 1223–1241. https://doi.org/10.1007/s00024-
    015-1174-y
    • Grünthal, G. (1985). The up-dated earthquake catalogue for the German Democratic
    Republic and adjacent areas—Statistical data characteristics and conclusions
    for hazard assessment. 3rd International Symposium on the Analysis of
    Seismicity and on Seismic Risk (Prague 1985), Prague.
    • Grunthal, G. (1998). European Macroseismic Scale 1998 (Vol. 15). Cahiers
    du Centre Europèen de Gèodynamique et de Seismologie. Conseil de l’Europe,
    Conseil de l’Europe.
    Grünthal, G., Arvidsson, R., & Bosse, C. (2010). Earthquake model
    for the European-Mediterranean Region for the purpose of GEM1. 1–35.
    https://doi.org/10.2312/GFZ.b103-10043
    • Grünthal, G., Bosse, C., Sellami, S., Mayer-Rosa, D., & Giardini, D. (1999).
    Compilation of the GSHAP regional seismic hazard for Europe, Africa and the
    Middle East. Annals of Geophysics, 42 (6), Article 6. https://doi.org/10.4401/ag-
    3782
    • Grünthal, G., Stromeyer, D., Bosse, C., Cotton, F., & Bindi, D. (2018). The probabilistic
    seismic hazard assessment of Germany—Version 2016, considering the
    range of epistemic uncertainties and aleatory variability. Bulletin of Earthquake
    Engineering, 16 (10), 4339–4395. https://doi.org/10.1007/s10518-018-0315-y
    • Grünthal, G., & Wahlström, R. (2012). The European-Mediterranean Earthquake
    Catalogue (EMEC) for the last millennium. Journal of Seismology, 16 (3),
    Article 3. https://doi.org/10.1007/s10950-012-9302-y
    • Grünthal, G., Wahlström, R., & Stromeyer, D. (2009). The unified catalogue of
    earthquakes in central, northern, and northwestern Europe (CENEC)-updated
    and expanded to the last millennium. Journal of Seismology, 13 (4), 517–541.
    https://doi.org/10.1007/s10950-008-9144-9
    • Guidoboni, E., & Ebel, J. E. (2009). Earthquakes and Tsunamis in the Past.
    A Guide to Techniques in Historical Seismology. Cambridge University Press.
    https://www.earth-prints.org/handle/2122/5880
    • Gulerce, Z., Salic, R., Kuka, N., Markušić, S., Mihaljevic, J., Kovačević, V.,
    Sandikkaya, M. A., Milutinovic, Z., Duni, L., Stanko, D., Kaludjerovic, N., &
    Kovačević, S. (2017). Seismic Hazard Maps for the Western Balkan. Inženjerstvo
    Okoliša, 4, 7–17.
    • Gulia, L., Wiemer, S., & Wyss, M. (2012). Catalog artifacts and quality control.
    https://doi.org/10.5078/CORSSA-93722864
    • Gutenberg, B. (1945). Amplitudes of surface waves and magnitudes of shallow
    earthquakes*. Bulletin of the Seismological Society of America, 35 (1), 3–12.
    https://doi.org/10.1785/BSSA0350010003
    • Gutenberg, B., & Richter, C. (1949). Seismicity Of The
    Earth And Associated Phenomena. Princeton University Press.
    http://archive.org/details/seismicityofthee009299mbp
    • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquakes in California*.
    Bulletin of the Seismological Society of America, 34 (4), Article 4.
    https://doi.org/10.1785/BSSA0340040185
    • Gutenberg, B., & Richter, C. F. (1955). Magnitude and Energy of Earthquakes.
    Nature, 176 (4486), 795–795. https://doi.org/10.1038/176795a0
    • Gutenberg, B., & Richter, C. F. (1956). Earthquake magnitude, intensity, energy,
    and acceleration (Second paper). Bulletin of the Seismological Society of America,
    46 (2), Article 2.
    Habermann, R. E., & Wyss, M. (1984). Background seismicity rates and precursory
    seismic quiescence: Imperial Valley, California. Bulletin of the Seismological
    Society of America, 74 (5), 1743–1755. https://doi.org/10.1785/BSSA0740051743
    • Hanks, T., & Bakun, W. (2002). A Bilinear Source-Scaling Model for M-log A
    Observations of Continental Earthquakes. Bulletin of the Seismological Society
    of America, 92 (5), 1841–1846. https://doi.org/10.1785/0120010148
    • Hanks, T., & Kanamori, H. (1979). A moment magnitude scale.
    https://doi.org/10.1029/JB084IB05P02348
    • Harmsen, S. C. (2001). Mean and Modal ϵ in the Deaggregation of Probabilistic
    Ground Motion. Bulletin of the Seismological Society of America, 91 (6), 1537–
    1552. https://doi.org/10.1785/0120000289
    • Havskov, J., & Dushi, E. (2019). Albania seismologcal network,
    how it works and some recomandations for improvement (1; p. 6).
    https://www.geo.uib.no/seismo/REPORTS/ALBANIA/albania-uib-report-
    1.pdf
    • Havskov, J., Kuka, N., Duni, L., Dushi, E., & Bozo, R. (2020). The Albanian
    seismic network, plans and progress towards improving data acquisition and
    processing. Status January 2020. (2; p. 14).
    • Heath, D. C., Wald, D. J., Worden, C. B., Thompson, E. M., & Smoczyk,
    G. M. (2020). A global hybrid VS30 map with a topographic slope–based
    default and regional map insets. Earthquake Spectra, 36 (3), 1570–1584.
    https://doi.org/10.1177/8755293020911137
    • Helmstetter, A., & Werner, M. J. (2012). Adaptive Spatiotemporal
    Smoothing of Seismicity for Long-Term Earthquake Forecasts in California.
    Bulletin of the Seismological Society of America, 102 (6), 2518–2529.
    https://doi.org/10.1785/0120120062
    • Herak, M. (2020). Conversion between the local magnitude (ML) and the moment
    magnitude (Mw) for earthquakes in the Croatian Earthquake Catalogue. G e o
    f i z i k a, 37 (2), Article 2. https://doi.org/10.15233/gfz.2020.37.10
    • Hiemer, S., Woessner, J., Basili, R., Danciu, L., Giardini, D., & Wiemer, S.
    (2014). A smoothed stochastic earthquake rate model considering seismicity
    and fault moment release for Europe. Geophysical Journal International, 198,
    1159–1172. https://doi.org/10.1093/gji/ggu186
    • Holschneider, M., Zöller, G., & Hainzl, S. (2011). Estimation of the Maximum
    Possible Magnitude in the Framework of a Doubly Truncated Gutenberg–Richter
    Model. Bulletin of the Seismological Society of America, 101 (4), 1649–1659.
    https://doi.org/10.1785/0120100289
    • Hough, S. E. (2013). Spatial Variability of “Did You Feel It?” Intensity Data:
    Insights into Sampling Biases in Historical Earthquake Intensity Distributions.
    Bulletin of the Seismological Society of America, 103 (5), 2767–2781.
    https://doi.org/10.1785/0120120285
    Hough, S. E., Martin, S. S., Gahalaut, V., Joshi, A., Landes, M., & Bossu,
    R. (2016). A comparison of observed and predicted ground motions from the
    2015 Mw7.8 Gorkha, Nepal, earthquake. Natural Hazards, 84 (3), 1661–1684.
    https://doi.org/10.1007/s11069-016-2505-8
    • IGEO. (2019a). Monthly Seismological Bulletin—November 2019 (5; Monthly
    Seismological Bulletin, p. 337). Institute of Geosciences (Albania).
    • IGEO. (2019b). Monthly Seismological Bulletin—November
    2019 (5; Issue 5). Institute of Geosciences (Albania).
    https://www.geo.edu.al/skedaret/bul112019.pdf
    • IGEO. (2019c). Strong Motion Records Durresi earthquake 26 November
    2019. Department of Seismology, Institute of GeoSciences (Albania);
    https://www.geo.edu.al/newweb/?fq=november.
    • IGEO. (2022). Monthly Seismological Bulletin [dataset].
    • Institute of GeoSciences (IGEO), Polytechnic University of Tirana (PUT). (2002).
    Albanian Seismological Network. International Federation of Digital Seismograph
    Networks. https://doi.org/10.7914/SN/AC
    • ISC. (2022a). ISC Bulletin [dataset]. International Seismological Centre.
    https://doi.org/10.31905/D808B830
    • ISC. (2022b). Reviewed ISC Bulletin. http://www.isc.ac.uk/iscbulletin/review/
    • Jimenez, J., Giardini, D., & Grunthal, G. (2003). The ESC-SESAME Unified
    Hazard Model for the European-Mediterranean region. 19, 5.
    • Jiménez, M., D.Giardini, Grünthal, G., Erdik, M., García-Fernández, M.,
    J.Lapajne, Makropoulos, K., R.Musson, Papaioannou, C., Rebez, A., Riad,
    S., Sellami, S., A.Shapira, Slejko, D., Eck, T., & Sayed, A. E. (2001). Unified
    Seismic Hazard Modeling Throughout The Mediterranean Region. Bollettino Di
    Geofisica Teorica Ed Applicata, 42, 3–18.
    • Johnson, K. L., Pagani, M., & Styron, R. H. (2021). PSHA of the southern
    Pacific Islands. Geophysical Journal International, 224 (3), 2149–2172.
    https://doi.org/10.1093/gji/ggaa530
    • Jouanne, F., Mugnier, J. L., Koci, R., Bushati, S., Matev, K., Kuka, N., Shinko,
    I., Kociu, S., & Duni, L. (2012). GPS constraints on current tectonics of Albania.
    Tectonophysics, 554–557, 50–62. https://doi.org/10.1016/j.tecto.2012.06.008
    • Kaklamanos, J., Boore, D. M., Thompson, E. M., & Campbell, K. W. (2010).
    Implementation of the Next Generation Attenuation (NGA) ground-motion
    prediction equations in Fortran and R. In Implementation of the Next Generation
    Attenuation (NGA) ground-motion prediction equations in Fortran and R
    (USGS Numbered Series 2010–1296; Open-File Report, Vols. 2010–1296). U.S.
    Geological Survey. https://doi.org/10.3133/ofr20101296
    • Kale, Ö., & Akkar, S. (2012). A Method To Determine The
    Appropriate GMPEs For A Selected Seismic Prone Region. 15th World Conference on Earthquake Engineering 2012 (15WCEE), 1, 10.
    https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_2827.pdf
    • Karnik, V. (1969). Seismicity of the European Area. In The Earth’s Crust
    and Upper Mantle (pp. 139–144). American Geophysical Union (AGU).
    https://doi.org/10.1029/GM013p0139
    • Kastelic, V., Vannoli, P., Burrato, P., Fracassi, U., Tiberti, M., & Valensise,
    G. (2013). Seismogenic sources in the Adriatic Domain. Marine and Petroleum
    Geology, 42, 191–213. https://doi.org/10.1016/j.marpetgeo.2012.08.002
    • Kijko, A., Vermeulen, P. J., & Smit, A. (2021). Estimation Techniques for Seismic
    Recurrence Parameters for Incomplete Catalogues. Surveys in Geophysics.
    https://doi.org/10.1007/s10712-021-09672-2
    • Kiratzi, A., Benetatos, C., & Roumelioti, Z. (2007). Distributed earthquake
    focal mechanisms in the Aegean Sea. Bulletin of the Geological Society of Greece,
    40 (3), Article 3. https://doi.org/10.12681/bgsg.16842
    • Kiratzi, A., & Dimakis, E. (2013). Focal mechanisms and slip models of moderate
    size earthquakes in Albania and adjacent countries. ITALIAN JOURNAL OF
    GEOSCIENCES, 132 (2013) f.2. https://doi.org/10.3301/IJG.2011.33
    • Kociu, S. (2000). Probabilistic approach used in seismic hazard of Albania.
    Seismicity Modeling in Seismic Hazard Mapping: Workshop Proceedings, Poljče,
    Slovenia, May 22 - 24, 2000.
    • Konstantinou, K. I. (2014). Moment Magnitude–Rupture Area Scaling
    and Stress-Drop Variations for Earthquakes in the Mediterranean Region.
    Bulletin of the Seismological Society of America, 104 (5), 2378–2386.
    https://doi.org/10.1785/0120140062
    • Konstantinou, K. I., & Melis, N. S. (2018). The relationship between local and
    moment magnitude in Greece during the period 2008–2016. Pure and Applied
    Geophysics, 175 (3), 731–740. https://doi.org/10.1007/s00024-017-1750-4
    • Kotha, S. R., Weatherill, G., Bindi, D., & Cotton, F. (2020).
    A regionally-adaptable ground-motion model for shallow crustal earthquakes
    in Europe. Bulletin of Earthquake Engineering, 18 (9), 4091–4125.
    https://doi.org/10.1007/s10518-020-00869-1
    • Kowsari, M., Halldorsson, B., & Hrafnkelsson, B. (2017). On The Selection Of
    Ground-motion Prediction Equations For Seismic Hazard Assessment In The
    South Iceland Seismic Zone. 16th World Conference on Earthquake, 16WCEE
    2017, 10. https://www.wcee.nicee.org/wcee/article/16WCEE/WCEE2017-
    2809.pdf
    • Kramer, S. L. (1996). Geotechnical Earthquake Engineering (1st ed.). Prentice-
    Hall International Series in Civil Engineering and Engineering Mechanics, Prentice
    Hall: New Jersey.
    • Kuka, N., Duni, L., Koci, R., Dushi, E., & Xhahysa, A. (2020). Probabilistic
    Seismic Hazard Assessment of Albania. Albanian Journal of Natural & Technical
    Sciences, 16.
    Kulkarni, R. B., Youngs, R. R., & Coppersmith, K. J. (1984). Assessment
    of confidence intervals for results of seismic hazard analysis. Proceedings, 1,
    263–270. https://www.iitk.ac.in/nicee/wcee/article/8_vol1_263.pdf
    • Laigle, M., Hirn, A., Sachpazi, M., & Clément, C. (2002). Seismic coupling and
    structure of the Hellenic subduction zone in the Ionian Islands region. Earth
    and Planetary Science Letters, 200 (3), 243–253. https://doi.org/10.1016/S0012-
    821X(02)00654-4
    • Lanzano, G., Russo, E., Felicetta, C., D’Amico, M., Sgobba, S.,
    & Pacor, F. (2018). Engineering Strong Motion Database (ESM) flatfile
    [Data set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV).
    https://doi.org/10.13127/esm/flatfile.1.0
    • Lapajne, J. K., Motnikar, B. S., Zabukovec, B., & Zupancic, P. (1997). Spatially
    smoothed seismicity modeling of seismic hazard in Slovenia. Journal of
    Seismology, 1 (1), 73–85. https://doi.org/10.1023/A:1009783602054
    • Lemoine, A., Douglas, J., & Cotton, F. (2012). Testing the Applicability
    of Correlations between Topographic Slope and VS30 for Europe.
    Bulletin of the Seismological Society of America, 102 (6), 2585–2599.
    https://doi.org/10.1785/0120110240
    • Leonard, M. (2014). Self-Consistent Earthquake Fault-Scaling Relations: Update
    and Extension to Stable Continental Strike-Slip Faults. Bulletin of the Seismological
    Society of America, 104 (6), 2953–2965. https://doi.org/10.1785/0120140087
    • Luzi, L., Lanzano, G., Felicetta, C., D’Amico, M. C., Russo, E., Sgobba, S.,
    Pacor, F., & ORFEUS Working Group 5. (2020). Engineering Strong Motion
    Database (ESM), version 2.0. https://doi.org/10.13127/ESM.2
    • Luzi, L., Puglia, R., Russo, E., D’Amico, M., Felicetta, C., Pacor, F., Lanzano,
    G., Çeken, U., Clinton, J., Costa, G., Duni, L., Farzanegan, E., Gueguen, P.,
    Ionescu, C., Kalogeras, I., Özener, H., Pesaresi, D., Sleeman, R., Strollo, A.,
    & Zare, M. (2016). The Engineering Strong-Motion Database: A Platform
    to Access Pan-European Accelerometric Data. Seismological Research Letters,
    87 (4), 987–997. https://doi.org/10.1785/0220150278
    • Maesano, F. E., Tiberti, M. M., & Basili, R. (2017). The Calabrian Arc: Threedimensional
    modelling of the subduction interface. Scientific Reports, 7 (1),
    Article 1. https://doi.org/10.1038/s41598-017-09074-8
    • Mak, S., & Schorlemmer, D. (2016). What Makes People Respond to
    “Did You Feel It?”? Seismological Research Letters, 87 (1), 119–131.
    https://doi.org/10.1785/0220150056
    • Makropoulos, K. C., & Burton, P. W. (1981). A catalogue of seismicity in
    Greece and adjacent areas. Geophysical Journal International, 65 (3), 741–762.
    https://doi.org/10.1111/j.1365-246X.1981.tb04881.x
    • Makropoulos, K., Kaviris, G., & Kouskouna, V. (2012). An updated and extended
    earthquake catalogue for Greece and adjacent areas since 1900. Natural Hazards and Earth System Sciences, 12, 1425–1430. https://doi.org/10.5194/nhess-12-
    1425-2012
    Contribution for seismic hazard assessment with local scale focus on Durres
    (Albania) and damage observation after the ML 5.4, 21st September 2019 earthquake.
    EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-19528.
    https://doi.org/10.5194/egusphere-egu2020-19528
    • Mantovani, E., Tamburelli, C., Babbucci, D., Viti, M., Cenni, N., Mantovani,
    E., Tamburelli, C., Babbucci, D., Viti, M., & Cenni, N. (2020). Tectonics
    and Seismicity in the periAdriatic Zones: Implications for Seismic
    Hazard in Italy. In Earthquakes—From Tectonics to Buildings. IntechOpen.
    https://doi.org/10.5772/intechopen.94924
    • Markušić, S., Gülerce, Z., Kuka, N., Duni, L., Ivančić, I., Radovanović,
    S., Glavatović, B., Milutinović, Z., Akkar, S., Kovačević, S., Mihaljević, J.,
    & Šalić, R. (2016). An updated and unified earthquake catalogue for the
    Western Balkan Region. Bulletin of Earthquake Engineering, 14 (2), 321–343.
    https://doi.org/10.1007/s10518-015-9833-z
    • Matraku, K., Jouanne, F., Dushi, E., Koçi, R., Kuka, N., Grandin, R.,
    & Bascou, P. (2023). The 26 November 2019 Durrës earthquake, Albania:
    Coseismic displacements and occurrence of slow slip events in the year following
    the earthquake. Geophysical Journal International, 234 (2), 807–838.
    https://doi.org/10.1093/gji/ggad101
    • McGuire, R. (2004). Seismic hazard and risk analysis (MNO-10; p. 119). Earthquake
    Engineering Research Institute.
    • McKenzie, D. (1972). Active Tectonics of the Mediterranean Region.
    Geophysical Journal of the Royal Astronomical Society, 30 (2), 109–185.
    https://doi.org/10.1111/j.1365-246X.1972.tb02351.x
    • Medvedev, S., Sponheuer, W., & Karnik, V. (1964). Intensity scale of earthquakes.
    In 7. Tagung der Europäischen Seismologischen Kommission vom 24. 9. Bis 30. 9.
    1962 in Jena, DDR (pp. 69–72). http://bib.gfz-potsdam.de/pub/esc/esc-07.pdf
    • Meletti, C., D’Amico, V., & Martinelli, F. (2009). SHARE D3.3 –
    Homogeneous determination of maximum magnitude. http://www.shareeu.
    org/sites/default/files/D3%203_SHARE.pdf
    • Meletti, C., Patacca, E., & Scandone, P. (2000). Construction of a Seismotectonic
    Model: The Case of Italy: Pure and Applied Geophysics, 157 (1), 11–35.
    https://doi.org/10.1007/PL00001089
    • Mignan, A., Werner, M. J., Wiemer, S., Chen, C.-C., & Wu, Y.-M. (2011).
    Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake
    Catalogs. Bulletin of the Seismological Society of America, 101 (3), 1371–
    1385. https://doi.org/10.1785/0120100223
    • Mignan, A., & Woessner, J. (2012). Estimating the magnitude of completeness
    for earthquake catalogs. https://doi.org/10.5078/CORSSA-00180805
    Mihaljević, J., Zupančič, P., Kuka, N., Kaluđerović, N., Koçi, R., Markušić,
    S., Šalić, R., Dushi, E., Begu, E., Duni, L., Živčić, M., Kovačević, S.,
    Ivančić, I., Kovačević, V., Milutinović, Z., Vakilinezhad, M., Fiket, T., &
    Gülerce, Z. (2017). BSHAP seismic source characterization models for the
    Western Balkan region. Bulletin of Earthquake Engineering, 15 (10), 3963–3985.
    https://doi.org/10.1007/s10518-017-0143-5
    • Morelli, C. (1941). La sismicita dell ’Albania (84). IST I TUT O NAZIONAL E
    D I GEOFISIO A D E L CONSIGLI O NAZIONAL E DELL E RICERCH E.
    http://sismos.rm.ingv.it/images/ping/PING_084.pdf
    • Muço, B. (1994). Focal mechanism solutions for Albanian earthquakes
    for the years 1964–1988. Tectonophysics, 231 (4), Article 4.
    https://doi.org/10.1016/0040-1951(94)90041-8
    • Muco, B. (1998). Catalogue of ML≥3.0 earthquakes in Albania from 1976 to
    1995 and distribution of seismic energy released. Tectonophysics, 292 (3), Article
    3. https://doi.org/10.1016/S0040-1951(98)00071-7
    • Muço, B. (1999). Twenty Years Recording of Albanian Seismological Network: A
    Catalogue and Distribution of Seismic Energy Released. In F. Wenzel, D. Lungu,
    & O. Novak (Eds.), Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation
    (Vol. 11, pp. 49–56). Springer Netherlands. https://doi.org/10.1007/978-94-011-
    4748-4_5
    • Muco, B. (2002). Development of a Moment Magnitude Relation for Albania.
    Bulletin of The Seismological Society of America - BULL SEISMOL SOC AMER,
    92, 1136–1140. https://doi.org/10.1785/0120010204
    • Muco, B. (2004). Probabilistic seismic hazard assessment in Albania.
    13th World Conference on Earthquake Engineering, Vancouver, Canada.
    https://doi.org/10.3301/IJG.2012.33
    • Muco, B. (2006). Seismicity of the Adriatic Microplate and a Possible Triggering:
    Geodynamic Implications (Vol. 61, pp. 351–367). https://doi.org/10.1007/1-4020-
    4235-3_24
    • Muco, B., Alexiev, G., Aliaj, S., Elezi, Z., Grecu, B., Mandrescu, N., Milutinovic,
    Z., Radulian, M., Ranguelov, B., & Shkupi, D. (2012). Geohazards assessment
    and mapping of some Balkan countries. NATURAL HAZARDS, 64, 943–981.
    https://doi.org/10.1007/s11069-012-0185-6
    • Muço, B., & Minga, P. (1991). Magnitude determination of near earthquakes
    for the Albanian network. 33 (129), 17–24.
    • Muço, B., Vaccari, F., Panza, G., & Kuka, N. (2002). Seismic zonation
    in Albania using a deterministic approach. Tectonophysics, 344 (3), 277–288.
    https://doi.org/10.1016/S0040-1951(01)00279-7
    • Murphy, J. R., & O’Brien, L. J. (1977). The correlation of peak ground
    acceleration amplitude with seismic intensity and other physical parameters.
    Bulletin of the Seismological Society of America, 67 (3), 877–915.
    https://doi.org/10.1785/BSSA0670030877
    Musson, R., Grunthal, G., & Stucchi, M. (2009). The comparison of
    macroseismic intensity scales. Journal of Seismology, 14 (2), Article 2.
    https://doi.org/10.1007/s10950-009-9172-0
    • Musson, R. M. W. (1999). Probabilistic seismic hazard maps for the North Balkan
    region. Annals of Geophysics, 42 (6), Article 6. https://doi.org/10.4401/ag-3772
    • Musson, R., Sellami, S., & Brustle, W. (2009). Preparing a seismic hazard model
    for Switzerland: The view from PEGASOS Expert Group 3 (EG1c). Swiss
    Journal of Geosciences, 102, 107–120. https://doi.org/10.1007/s00015-008-1301-
    1
    • Oliveti, I., Faenza, L., & Michelini, A. (2022). New reversible relationships
    between ground motion parameters and macroseismic intensity for Italy and
    their application in ShakeMap. Geophysical Journal International, 231 (2), 1117–
    1137. https://doi.org/10.1093/gji/ggac245
    • Omori, F. (1894). On After-shocks. Seismological Journal of Japan, 19, 71–80.
    • Pagani, M., Johnson, K., & Garcia Pelaez, J. (2021). Modelling subduction
    sources for probabilistic seismic hazard analysis. Geological Society, London,
    Special Publications, 501 (1), 225–244. https://doi.org/10.1144/SP501-2019-120
    • Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V.,
    Henshaw, P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M., & Vigano,
    D. (2014). OpenQuake Engine: An Open Hazard (and Risk) Software for
    the Global Earthquake Model. Seismological Research Letters, 85 (3), 692–702.
    https://doi.org/10.1785/0220130087
    • Paolucci, R., Pacor, F., Puglia, R., Ameri, G., Cauzzi, C., & Massa, M. (2011).
    Record Processing in ITACA, the New Italian Strong-Motion Database. In
    S. Akkar, P. Gülkan, & T. van Eck (Eds.), Earthquake Data in Engineering
    Seismology: Predictive Models, Data Management and Networks (pp. 99–113).
    Springer Netherlands. https://doi.org/10.1007/978-94-007-0152-6_8
    • Papadopoulos, G., Agalos, A., Carydis, P., Lekkas, E., Mavroulis, S., & Triantafyllou,
    I. (2020). The 26 November 2019 Mw 6.4 Albania Destructive Earthquake.
    Seismological Research Letters, 1–10. https://doi.org/10.1785/0220200207
    • Papaioannou, Ch. A., & Papazachos, B. C. (2000). Time-Independent
    and Time-Dependent Seismic Hazard in Greece Based on Seismogenic
    Sources. Bulletin of the Seismological Society of America, 90 (1), 22–33.
    https://doi.org/10.1785/0119980023
    • Papazachos, B. (1988). The seismic zones in the Aegean and surrounding areas.
    Proceedings, European Seismol. Soc., XXI General Assembly, 82–87.
    • Papazachos, B. (1996). Large seismic faults in the Hellenic arc. Annals of
    Geophysics, 39. https://doi.org/10.4401/ag-4023
    • Papazachos, B. C. (1990). Seismicity of the Aegean and surrounding area.
    Tectonophysics, 178 (2), 287–308. https://doi.org/10.1016/0040-1951(90)90155-2
    • Papazachos, B. C., & Papazachou, C. (1997). The Earthquakes of Greece. 304.
    Papazachos, B. C., Savvaidis, A., Papazachos, C., Papaioannou, C., Kiratzi,
    A., Muco, B., Kociu, S., & E., S. (2015). Atlas of Isoseismal Maps for
    Shallow Earthquakes in Albania and the surrounding area (1851-1990). 10.
    https://doi.org/10.13140/RG.2.1.1050.2487
    • Papazachos, C., & Papaioannou, Ch. (1997). The macroseismic
    field of the Balkan area. Journal of Seismology, 1 (2), 181–201.
    https://doi.org/10.1023/A:1009709112995
    • Pearce, F. D., Rondenay, S., Sachpazi, M., Charalampakis, M., & Royden, L.
    H. (2012). Seismic investigation of the transition from continental to oceanic
    subduction along the western Hellenic Subduction Zone. Journal of Geophysical
    Research: Solid Earth, 117 (B7). https://doi.org/10.1029/2011JB009023
    • Petersen, M. D., ShuMway, A. M., Powers, P. M., Field, E. H., Moschetti, M.
    P., Jaiswal, K. S., Milner, K. R., Rezaeian, S., Frankel, A. D., Llenos, A. L.,
    Michael, A. J., Altekruse, J. M., Ahdi, S. K., Withers, K. B., Mueller, C. S.,
    Zeng, Y., Chase, R. E., Salditch, L. M., Luco, N., . . . Witter, R. C. (2024). The
    2023 US 50-State National Seismic Hazard Model: Overview and implications.
    Earthquake Spectra, 40 (1), 5–88. https://doi.org/10.1177/87552930231215428
    • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R.,
    Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G.,
    Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M.,
    Guseva, T., . . . Karam, G. (2006). GPS constraints on continental deformation
    in the Africa-Arabia-Eurasia continental collision zone and implications for the
    dynamics of plate interactions. Journal of Geophysical Research: Solid Earth,
    111 (B5). https://doi.org/10.1029/2005JB004051
    • Reiter, L. (1990). Earthquake Hazard Analysis: Issues and Insights. Columbia
    University Press, New York.
    • Rezaeian, S., Petersen, M. D., & Moschetti, M. P. (2015). Ground Motion
    Models Used in the 2014 U.S. National Seismic Hazard Maps. Earthquake
    Spectra, 31 (1_suppl), S59–S84. https://doi.org/10.1193/111714EQS194M
    • Richter, C. F. (1935). An instrumental earthquake magnitude scale. Bulletin of
    the Seismological Society of America, 25 (1), Article 1.
    • Rodriguez-Marek, A., Cotton, F., Abrahamson, N. A., Akkar, S., Al Atik,
    L., Edwards, B., Montalva, G. A., & Dawood, H. M. (2013). A Model for
    Single-Station Standard Deviation Using Data from Various Tectonic Regions.
    Bulletin of the Seismological Society of America, 103 (6), 3149–3163.
    https://doi.org/10.1785/0120130030
    • Rontogianni, S., Konstantinou, K. I., Melis, N. S., & Evangelidis, C. P.
    (2011). Slab stress field in the Hellenic subduction zone as inferred from
    intermediate-depth earthquakes. Earth, Planets and Space, 63 (2), Article 2.
    https://doi.org/10.5047/eps.2010.11.011
    • Rovida, A., & Antonucci, A. (2021). EPICA - European PreInstrumental Earthquake
    CAtalogue, version 1.1. Istituto Nazionale di Geofisica e Vulcanologia
    (INGV). https://www.emidius.eu/epica/
    the 2011 version of the Parametric Catalogue of Italian Earthquakes.
    https://doi.org/10.6092/INGV.IT-CPTI11
    • Salic, R., Gulerce, Z., Kuka, N., Markušić, S., Mihaljevic, J., Kovačević, V.,
    Sandikkaya, M. A., Milutinovic, Z., Duni, L., Stanko, D., Kaludjerovic, N., &
    Kovačević, S. (2018). Harmonized seismic hazard maps for the western Balkan
    countries. 16th European Conference on Earthquake Engineering,18-21 June,
    Thessaloniki, Greece.
    • Salic, R., Sandıkkaya, M., Milutinović, Z., Gulerce, Z., Duni, L., Kovačević, V.,
    Markušić, S., Mihaljević, J., Kuka, N., Kaludjerovic, N., Kotur, N., Krmpotic, S.,
    Kuk, K., & Stanko, D. (2016). BSHAP project strong ground motion database
    and selection of suitable ground motion models for the Western Balkan Region.
    Bulletin of Earthquake Engineering. https://doi.org/10.1007/s10518-016-9950-3
    • Scherbaum, F., Cotton, F., & Staedtke, H. (2006). The Estimation of
    Minimum-Misfit Stochastic Models from Empirical Ground-Motion Prediction
    Equations. Bulletin of the Seismological Society of America, 96 (2), 427–445.
    https://doi.org/10.1785/0120050015
    • Scherbaum, F., Delavaud, E., & Riggelsen, C. (2009). Model Selection
    in Seismic Hazard Analysis: An Information-Theoretic Perspective.
    Bulletin of the Seismological Society of America, 99 (6), 3234–3247.
    https://doi.org/10.1785/0120080347
    • Schorlemmer, D., & Woessner, J. (2008). Probability of Detecting an Earthquake.
    Bulletin of the Seismological Society of America, 98 (5), 2103–2117.
    https://doi.org/10.1785/0120070105
    • Scordilis, E. M. (2006). Empirical Global Relations Converting MS
    and mb to Moment Magnitude. Journal of Seismology, 10 (2), 225–236.
    https://doi.org/10.1007/s10950-006-9012-4
    • Şeşetyan, K., Danciu, L., Demircioğlu Tümsa, M. B., Giardini, D., Erdik, M.,
    Akkar, S., Gülen, L., Zare, M., Adamia, S., Ansari, A., Arakelyan, A., Askan, A.,
    Avanesyan, M., Babayan, H., Chelidze, T., Durgaryan, R., Elias, A., Hamzehloo,
    H., Hessami, K., . . . Yılmaz, M. T. (2018). The 2014 seismic hazard model of
    the Middle East: Overview and results. Bulletin of Earthquake Engineering,
    16 (8), 3535–3566. https://doi.org/10.1007/s10518-018-0346-4
    • Shaw, B. (2009). Constant Stress Drop from Small to Great Earthquakes
    in Magnitude-Area Scaling. Bulletin of the Seismological Society of America,
    99 (2A), 871–875. https://doi.org/10.1785/0120080006
    • Shaw, B. (2013). Appendix E—Evaluation of Magnitude-Scaling Relationships
    and Depth of Rupture. In Uniform California Earthquake Rupture Forecast,
    Version 3 (UCERF3)—The Time-Independent Model (Vol. 3).
    • Shaw, B., Ambraseys, N. N., England, P. C., Floyd, M. A., Gorman, G.
    J., Higham, T. F. G., Jackson, J. A., Nocquet, J.-M., Pain, C. C., & Piggott,
    M. D. (2008). Eastern Mediterranean tectonics and tsunami hazard inferred from the AD 365 earthquake. Nature Geoscience, 1 (4), Article 4.
    https://doi.org/10.1038/ngeo151
    • Shebalin, N. V., Karnik, V., & Hadzievski, D. (1974a). Catalogue of earthquakes
    of the Balkan region. I, UNDP-UNESCO Survey of the Seismicity of the Balkan
    Region. Skopje, 600 Pp.
    • Shebalin, N. V., Karnik, V., & Hadzievski, D. (1974b). Catalogue of earthquakes
    (of the Balkan region), pt. I: 1901-1970; pt. II: prior to 1901—UNESCO Digital
    Library.
    • Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude-frequency
    b value. Bulletin of the Seismological Society of America, 72 (5), 1677–1687.
    https://doi.org/10.1785/BSSA0720051677
    • Sieberg, A., & Gutenberg, B. (1923). Geologische, physikalische und angewandte
    erdbebenkunde. G. Fischer.
    Silva, V., Crowley, H., Pagani, M., Pinho, R., & Monelli, D. (2012). Development
    and Application of OpenQuake, an Open Source Software for Seismic Risk
    Assessment. 10.
    • Slejko, D., Camassi, R., Cecic, I., Muço, B., & Herak, D. (1999). Seismic hazard
    assessment for Adria. Annals of Geophysics = Annali Di Geofisica, 42 (6), 23.
    • Smyth, C., & Mori, J. (2009). Temporal Variations in the Gutenberg-Richter
    distribution prior to the Kobe earthquake. 52 (B), 255–262.
    • Stepp, J. C. (1972). Analysis of Completeness of the Earthquake Sample in the
    Puget Sound Area and Its Effect on Statistical Estimates of Earthquake Hazard |
    Resolution Copper Project and Land Exchange Environmental Impact Statement.
    2, 897–910.
    • Stewart, J. P., Douglas, J., Alessandro, C. D., Bozorgnia, Y., Abrahamson,
    N. A., Boore, D. M., Campbell, K. W., Delavaud, E., Erdik,
    M., & Stafford, P. J. (2012). Selection of a Global Set of GMPEs for
    the GEM-PEER Global GMPEs Project. Proceedings of the Fifthteenth
    World Conference on Earthquake Engineering Lisbon, Portugal, 2012, 9.
    https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_2320.pdf
    • Stewart, J. P., Douglas, J., Javanbarg, M., Di Alessandro, C., Bozorgnia, Y.,
    Abrahamson, N. A., Boore, D. M., Campbell, K. W., Delavaud, E., Erdik, M., &
    Stafford, P. J. (2013). GEM-PEER Task 3 Project: Selection of a Global Set of
    Ground Motion Prediction Equations, PEER Report 2013-22. Pacific Earthquake
    Engineering Research Center, University of California.
    • Stirling, M., Goded, T., Berryman, K., & Litchfield, N. (2013). Selection
    of Earthquake Scaling Relationships for Seismic-Hazard Analysis.
    Bulletin of the Seismological Society of America, 103 (6), 2993–3011.
    https://doi.org/10.1785/0120130052
    • Strasser, F. O., Arango, M. C., & Bommer, J. J. (2010). Scaling of the
    Source Dimensions of Interface and Intraslab Subduction-zone Earthquakes with Moment Magnitude. Seismological Research Letters, 81 (6), 941–950.
    https://doi.org/10.1785/gssrl.81.6.941
    Stucchi, M., Rovida, A., Gomez Capera, A. A., Alexandre, P., Camelbeeck, T.,
    Demircioglu, M. B., Gasperini, P., Kouskouna, V., Musson, R. M. W., Radulian,
    M., Sesetyan, K., Vilanova, S., Baumont, D., Bungum, H., Fäh, D., Lenhardt,
    W., Makropoulos, K., Martinez Solares, J. M., Scotti, O., . . . Giardini, D. (2013).
    The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. Journal of
    Seismology, 17 (2), Article 2. https://doi.org/10.1007/s10950-012-9335-2
    • Sulstarova, E. (1996). Earthquake hazard assessment in Albania. In L.
    Faugères & C. Villain-Gandossi (Eds.), Risque, nature et société: Actes
    du séminaire « Delphes I » (pp. 199–216). Éditions de la Sorbonne.
    http://books.openedition.org/psorbonne/32094
    • Sulstarova, E., & Aliaj, S. (2001). Seismic Hazard Assessment in Albania AJNTS
    2001 (10): 89-100. (1), 89–100.
    • Sulstarova, E., & Kociu, S. (1975). The catalogue of Albanian earthquakes (1800-
    1970). Seismology Center. https://www.emidius.eu/AHEAD/study/SUKO975
    Tan, O. (2021). A homogeneous earthquake catalogue for Turkey. Natural Hazards
    and Earth System Sciences, 21 (7), 2059–2073. https://doi.org/10.5194/nhess-
    21-2059-2021
    • Taroni, M., & Akinci, A. (2021). A New Smoothed Seismicity Approach to
    Include Aftershocks and Foreshocks in Spatial Earthquake Forecasting: Application
    to the Global Mw ≥ 5.5 Seismicity. Applied Sciences, 11 (22), Article 22.
    https://doi.org/10.3390/app112210899
    • Telesca, L., Lovallo, M., Golay, J., & Kanevski, M. (2016). Comparing seismicity
    declustering techniques by means of the joint use of Allan Factor and Morisita
    index. Stochastic Environmental Research and Risk Assessment, 30 (1), 77–90.
    https://doi.org/10.1007/s00477-015-1030-8
    • Teng, G., & Baker, J. W. (2019). Seismicity Declustering and Hazard Analysis of
    the Oklahoma–Kansas Region. Bulletin of the Seismological Society of America,
    109 (6), 2356–2366. https://doi.org/10.1785/0120190111
    • The MathWorks Inc. (2023). MATLAB version: 23.2.0 (R2023b) Update
    6 [Computer software]. Natick, Massachusetts: The MathWorks Inc.
    https://www.mathworks.com/
    • Theodulidis, N. P., & Papazachos, B. C. (1992). Dependence of strong ground
    motion on magnitude-distance, site geology and macroseismic intensity for
    shallow earthquakes in Greece: I, Peak horizontal acceleration, velocity and
    displacement. Soil Dynamics and Earthquake Engineering, 11 (7), 387–402.
    https://doi.org/10.1016/0267-7261(92)90003-V
    • Thingbaijam, K. K. S., Martin Mai, P., & Goda, K. (2017). New Empirical Earthquake
    Source-Scaling Laws. Bulletin of the Seismological Society of America,
    107 (5), 2225–2246. https://doi.org/10.1785/0120170017
    Tselentis, G.-A., & Danciu, L. (2008). Empirical Relationships between
    Modified Mercalli Intensity and Engineering Ground-Motion Parameters in
    Greece. Bulletin of the Seismological Society of America, 98 (4), 1863–1875.
    https://doi.org/10.1785/0120070172
    • Uhrhammer, R. (1986). Characteristics of northern and central California seismicity.
    Earthquake Notes, 57.
    • UNDP. (2003). Assessment of Risks in Albania (Vleresimi i rreziqeve ne Shqiperi)
    (p. 110). United Nations Development Programme, Ministry of Local Government
    and Decentralization. https://www.geo.edu.al/durres/risk.pdf
    • Utsu, T. (1965). A method for determining the value of b in a formula log
    n=a=bM showing the magnitude frequency relation for earthquakes. Geophys.
    Bull. Hokkaido Univ., 13, 99–103.
    • Utsu, T. (1999). Representation and Analysis of the Earthquake Size Distribution:
    A Historical Review and Some New Approaches. Pure and Applied Geophysics,
    155 (2), 509–535. https://doi.org/10.1007/s000240050276
    • Utsu, T. (2002). A list of deadly earthquakes in the world: 1500–2000. International
    Geophysics, 81. https://doi.org/10.1016/S0074-6142(02)80245-5
    • Utsu, T., Ogata, Y., S, R., & Matsu’ura. (1995). The Centenary of the Omori
    Formula for a Decay Law of Aftershock Activity. Journal of Physics of the Earth,
    43 (1), 1–33. https://doi.org/10.4294/jpe1952.43.1
    • van Stiphout, T., Zhuang, J., & Marsan, D. (2012). Seismicity declustering.
    Community Online Resource for Statistical Seismicity Analysis, 25.
    https://doi.org/doi:10.5078/corssa52382934
    • Vittori, E., Blumetti, A. M., Comerci, V., Di Manna, P., Piccardi, L., Gega,
    D., & Hoxha, I. (2021). Geological effects and tectonic environment of the 26
    November 2019, Mw 6.4 Durres earthquake (Albania). Geophysical Journal
    International, 225 (2), 1174–1191. https://doi.org/10.1093/gji/ggaa582
    • Wald, D. J., & Allen, T. I. (2007). Topographic Slope as a Proxy for Seismic Site
    Conditions and Amplification. Bulletin of the Seismological Society of America,
    97 (5), 1379–1395. https://doi.org/10.1785/0120060267
    • Wald, D. J., Quitoriano, V., Dengler, L. A., & Dewey, J. W. (1999). Utilization
    of the Internet for Rapid Community Intensity Maps. Seismological Research
    Letters, 70 (6), 680–697. https://doi.org/10.1785/gssrl.70.6.680
    • Wald, D. J., Quitoriano, V., Worden, C. B., Hopper, M., & Dewey, J. W. (2011).
    USGS “Did You Feel It?” Internet-based macroseismic intensity maps. Annals
    of Geophysics, 54 (6), Article 6. https://doi.org/10.4401/ag-5354
    • Weatherill, G. A., Pagani, M., & Garcia, J. (2016). Exploring earthquake
    databases for the creation of magnitude-homogeneous catalogues: Tools for
    application on a regional and global scale. Geophysical Journal International,
    206 (3), Article 3. https://doi.org/10.1093/gji/ggw232
    Weatherill, G., Kotha, S. R., & Cotton, F. (2020). A regionally-adaptable
    “scaled backbone” ground motion logic tree for shallow seismicity in Europe:
    Application to the 2020 European seismic hazard model. Bulletin of Earthquake
    Engineering, 18 (11), 5087–5117. https://doi.org/10.1007/s10518-020-00899-9
    • Weginger, S., Puy, P. I. M. del, Jia, Y., & Lenhardt, W. (2020). Seismic
    hazard map of Austria (EGU2020-4820). EGU2020. Copernicus Meetings.
    https://doi.org/10.5194/egusphere-egu2020-4820
    • Weichert, D. H. (1980). Estimation of the earthquake recurrence
    parameters for unequal observation periods for different magnitudes.
    Bulletin of the Seismological Society of America, 70 (4), 1337–1346.
    https://doi.org/10.1785/BSSA0700041337
    • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among
    magnitude, rupture length, rupture width, rupture area, and surface displacement.
    Bulletin of the Seismological Society of America, 84 (4), 974–1002.
    https://doi.org/10.1785/BSSA0840040974
    • Wiemer, S. (2001). A Software Package to Analyze Seismicity: ZMAP. Seismological
    Research Letters, 72 (3), Article 3. https://doi.org/10.1785/gssrl.72.3.373
    • Wiemer, S., Danciu, L., Kremer, K., Edwards, B., Marti, M., Fäh, D., Hiemer,
    S., Wössner, J., Cauzzi, C., Kästli, P., & Kremer, K. (2016). Seismic Hazard
    Model 2015 for Switzerland (SUIhaz2015) [Pdf]. Swiss Seismological Service
    (SED) at ETH Zurich. https://doi.org/10.12686/a2
    • Wiemer, S., Giardini, D., Fäh, D., Deichmann, N., & Sellami, S. (2009). Probabilistic
    seismic hazard assessment of Switzerland: Best estimates and uncertainties.
    Journal of Seismology, 13 (4), 449–478. https://doi.org/10.1007/s10950-
    008-9138-7
    • Wiemer, S., & Wyss, M. (2000). Minimum Magnitude of Completeness in
    Earthquake Catalogs: Examples from Alaska, the Western United States,
    and Japan. Bulletin of the Seismological Society of America, 90 (4), 859–869.
    https://doi.org/10.1785/0119990114
    • Woessner, J., Danciu, L., Kästli, P., & Monelli, D. (2013). D6.6 –
    Databases of seismogenic zones, Mmax, earthquake activity rates, ground
    motion attenuation relations and associated logic trees. Swiss Seismological
    Service, Eidgenössische Technische Hochschule (SED-ETHZ).
    http://www.efehr.org/export/sites/efehr/.galleries/dwl_europe2013/D6-
    6_SHAREopt.pdf_2063069299.pdf
    • Woessner, J., Hardebeck, J., & Hauksson, E. (2010). What is an instrumental
    seismicity catalog? Community Online Resource for Statistical Seismicity
    Analysis. http://dx.doi.org/10.5078/corssa-38784307
    • Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grünthal,
    G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M. B., Hiemer, S.,
    Meletti, C., Musson, R. W., Rovida, A. N., Sesetyan, K., Stucchi, M., & The
    SHARE Consortium. (2015). The 2013 European Seismic Hazard Model: Key components and results. Bulletin of Earthquake Engineering, 13 (12), 3553–3596.
    https://doi.org/10.1007/s10518-015-9795-1
    Woessner, J., & Wiemer, S. (2005). Assessing the Quality of Earthquake
    Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty.
    Bulletin of the Seismological Society of America, 95 (2), Article 2.
    https://doi.org/10.1785/0120040007
    • Wood, H. O., & Neumann, F. (1931). Modified Mercalli intensity scale
    of 1931. Bulletin of the Seismological Society of America, 21 (4), 277–283.
    https://doi.org/10.1785/BSSA0210040277
    • Worden, C. B., Gerstenberger, M. C., Rhoades, D. A., & Wald, D. J. (2012).
    Probabilistic Relationships between Ground-Motion Parameters and Modified
    Mercalli Intensity in California. Bulletin of the Seismological Society of America,
    102 (1), 204–221. https://doi.org/10.1785/0120110156
    • Worden, C. B., Thompson, E. M., Hearne, M., & Wald, D. J. (2020). ShakeMap
    Manual Online: Technical manual, user’s guide, and software guide, U. S.
    Geological Survey. https://doi.org/10.5066/F7D21VPQ
    • Wyss, M., & Toya, Y. (2000). Is Background Seismicity Produced at a Stationary
    Poissonian Rate? Bulletin of the Seismological Society of America, 90 (5), 1174–
    1187. https://doi.org/10.1785/0119990158
    • Xhafaj, E., Chan, C.-H., & Ma, K.-F. (2024). Earthquake forecasting model for
    Albania: The area source model and the smoothing model. Natural Hazards and
    Earth System Sciences, 24 (1), 109–119. https://doi.org/10.5194/nhess-24-109-
    2024
    • Xhafaj, E., Ma, K., Chan, C., & Gao, J. (2024). On the Use of Instrumental
    and Macroseismic Data to Evaluate Ground-Motion Models: The 2019
    Mw 6.4 Durres, Albania, Earthquake Sequence. Seismological Research Letters.
    https://doi.org/10.1785/0220230205
    • Youngs, R. R., & Coppersmith, K. J. (1985). Implications of fault slip
    rates and earthquake recurrence models to probabilistic seismic hazard estimates.
    Bulletin of the Seismological Society of America, 75 (4), 939–964.
    https://doi.org/10.1785/BSSA0750040939
    • Zafarani, H., & Farhadi, A. (2017). Testing Ground-Motion Prediction Equations
    against Small-to-Moderate Magnitude Data in Iran. Bulletin of the Seismological
    Society of America, 107 (2), 912–933. https://doi.org/10.1785/0120160046
    • Zaliapin, I., & Ben-Zion, Y. (2020). Earthquake Declustering Using
    the Nearest-Neighbor Approach in Space-Time-Magnitude Domain.
    Journal of Geophysical Research: Solid Earth, 125 (4), e2018JB017120.
    https://doi.org/10.1029/2018JB017120
    • Zaliapin, I., Gabrielov, A., Keilis-Borok, V., & Wong, H. (2008). Clustering
    Analysis of Seismicity and Aftershock Identification. Physical Review Letters,
    101 (1), 018501. https://doi.org/10.1103/PhysRevLett.101.018501
    Woessner, J., & Wiemer, S. (2005). Assessing the Quality of Earthquake
    Catalogues: Estimating the Magnitude of Completeness and Its Uncertainty.
    Bulletin of the Seismological Society of America, 95 (2), Article 2.
    https://doi.org/10.1785/0120040007
    • Wood, H. O., & Neumann, F. (1931). Modified Mercalli intensity scale
    of 1931. Bulletin of the Seismological Society of America, 21 (4), 277–283.
    https://doi.org/10.1785/BSSA0210040277
    • Worden, C. B., Gerstenberger, M. C., Rhoades, D. A., & Wald, D. J. (2012).
    Probabilistic Relationships between Ground-Motion Parameters and Modified
    Mercalli Intensity in California. Bulletin of the Seismological Society of America,
    102 (1), 204–221. https://doi.org/10.1785/0120110156
    • Worden, C. B., Thompson, E. M., Hearne, M., & Wald, D. J. (2020). ShakeMap
    Manual Online: Technical manual, user’s guide, and software guide, U. S.
    Geological Survey. https://doi.org/10.5066/F7D21VPQ
    • Wyss, M., & Toya, Y. (2000). Is Background Seismicity Produced at a Stationary
    Poissonian Rate? Bulletin of the Seismological Society of America, 90 (5), 1174–
    1187. https://doi.org/10.1785/0119990158
    • Xhafaj, E., Chan, C.-H., & Ma, K.-F. (2024). Earthquake forecasting model for
    Albania: The area source model and the smoothing model. Natural Hazards and
    Earth System Sciences, 24 (1), 109–119. https://doi.org/10.5194/nhess-24-109-
    2024
    • Xhafaj, E., Ma, K., Chan, C., & Gao, J. (2024). On the Use of Instrumental
    and Macroseismic Data to Evaluate Ground-Motion Models: The 2019
    Mw 6.4 Durres, Albania, Earthquake Sequence. Seismological Research Letters.
    https://doi.org/10.1785/0220230205
    • Youngs, R. R., & Coppersmith, K. J. (1985). Implications of fault slip
    rates and earthquake recurrence models to probabilistic seismic hazard estimates.
    Bulletin of the Seismological Society of America, 75 (4), 939–964.
    https://doi.org/10.1785/BSSA0750040939
    • Zafarani, H., & Farhadi, A. (2017). Testing Ground-Motion Prediction Equations
    against Small-to-Moderate Magnitude Data in Iran. Bulletin of the Seismological
    Society of America, 107 (2), 912–933. https://doi.org/10.1785/0120160046
    • Zaliapin, I., & Ben-Zion, Y. (2020). Earthquake Declustering Using
    the Nearest-Neighbor Approach in Space-Time-Magnitude Domain.
    Journal of Geophysical Research: Solid Earth, 125 (4), e2018JB017120.
    https://doi.org/10.1029/2018JB017120
    • Zaliapin, I., Gabrielov, A., Keilis-Borok, V., & Wong, H. (2008). Clustering
    Analysis of Seismicity and Aftershock Identification. Physical Review Letters,
    101 (1), 018501. https://doi.org/10.1103/PhysRevLett.101.018501

    QR CODE
    :::