跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭彥廷
Yen-Ting Kuo
論文名稱: 顆粒間交互作用對奈米金自發磁性之影響
The spontaneous magnetism of gold nanoparticles by interparticle interaction
指導教授: 李文献
Wen-Hsien Li
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 96
語文別: 中文
論文頁數: 80
中文關鍵詞: 交互作用奈米金自發磁性
外文關鍵詞: interaction, spontaneous, nanoparticles, gold
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用熱蒸鍍法製作金奈米微粒,以編號Au531601、Au070604表示,利用TEM與X光繞射譜圖,定出微粒粒徑;從X光繞射譜圖與X光螢光光譜分析儀分析,樣品成分為95%金與5%鎢,無其他可偵測成份。由TEM影像觀察到Au531601金奈米微粒形貌為二十面體(Icosahedron)。
    3.5nm與6nm的金奈米微粒,皆觀察到自旋極化現象,且在不同溫度下變溫磁化強度出現一寬峰,推測與量子局域效應所造成的能隙差(Kubo gap)有關,而3.5nm金奈米微粒更觀察到激發磁矩現象。本論文更進一步壓合金奈米微粒,使得奈米微粒間交互作用影響增加,觀察自旋極化與激發磁矩現象的變化;我們亦發現隨著聚合密度變大,樣品的抗磁率也隨之增加。


    Two sets of gold nanoparticles were fabricated by the thermal evaporation method. X-ray diffraction patterns and TEM images showed the mean particle diameters for the two sets of samples to be 3.5 and 6 nm. TEM images reveal an icosahedral shape for the 3.5 nm Au nanoparticles, which corresponds to 923 atoms packed in six icosahedral shells.
    Magnetic properties were studied by ac magnetic susceptibility and magnetization measurements. The M-H curves of 3.5 nm Au nanoparticles can be well described by a Langevin profile plus a Brilliun Zeeman one and a linear diamagnetic term. We found that the spin arrangements of 3.5 nm Au particles are ferrimagnetic in nature, which contained a net spontaneous magnetic moment of 26 μB per particle.
    The effect of interparticle separation was also studied. The low temperature saturated magnetization MS and induced magnetization Mi of the fully packed power were 84% and 59% that of very loosely packed power.

    目 錄 論文摘要 Ⅰ Abstract Ⅱ 致謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅵ 第一章 緒論 1 1-1 塊材金的磁特性 1 1-2 奈米金粉立之新穎磁特性 4 1-3 奈米團簇之穩定結構 7 第二章 樣品製備與實驗儀器介紹 9 2-1 低真空熱蒸鍍冷凝製程說明 9 2-2 X光繞射儀介紹 11 2-3 X光螢光光譜分析儀介紹 13 2-4 穿透式電子顯微鏡介紹 15 2-5 物理特性量測系統介紹 18 2-6 壓合模具使用介紹 19 第三章 樣品基本性質分析 23 3-1 粒徑分析 23 3-2 成份分析 30 3-3 樣品團簇的穩定結構 31 第四章 樣品磁性分析探討 33 4-1 變溫磁化率、磁化強度與外加磁場 33 4-2 簡介朗之萬(Langevin)順磁理論 42 4-3 簡介布里淵(Brillouin)方程理論 46 4-4 磁化曲線之擬合分析 50 4-5 不同溫度下磁性特徵之比較分析 55 第五章 顆粒間距對磁化曲線之影響探討 58 5-1 變溫磁化強度、磁化率與顆粒間距 58 5-2 顆粒間距對磁化曲線的影響探討 60 5-3 加熱對樣品磁性的影響探討 64 第六章 結論 66 參考文獻 68

    [1] 姜壽亭、李衛,凝聚態磁性物理,科學出版社,2003。
    [2] H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake, and S. Yamada, Phys.
    Lett. A 263, 406 (1999).
    [3] V. Kumar and Y. Kawazoe, Eur. Phys. J. D 24, 81 (2003).
    [4] B. Sampedro, P. Crespo, A. Hernando, R. Litr?n, J. C. S?nchez L?pez, C. L?
    -pez Cartes, A. Fernandez, J. Ram?rez, J. Gonz?lez Calbet, and M. Vallet,
    Phys. Rev. Lett. 91, 237203 (2003).
    [5] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Naka
    mura, K. Kobayashi, T. Teranishi, and H. Hori, Phys. Rev. Lett. 93, 116801
    (2004).
    [6] G. M. Pastor, J. Dorantes-D?vila, and K. H. Bennemann, Phys. Rev. B 40,
    7642 (1989).
    [7] J. Jing, X. Yang, Y. Hsia, and U. Gonser, Surf. Sci. 233, 351 (1990).
    [8] H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, and M. Miyake, Phys. Rev. B 69, 174411 (2004).
    [9] P. Cheyssac, R. Kofman, G. Mattei, P. G. Merli, A. Migliori, and A. Stella,
    Superlattices and Microstructures 17, 47 (1995).
    [10] J. Abell?n, A. Arenas, R. Chic?n, and F. Reyes, Surface Science 372, L315
    (1997).
    [11] S. D. Brorson, J. G. Fujimoto, and E. P. Ippen, Phys. Rev. Lett. 59, 1962 (1987).
    [12] S. L. Logunov, T. S. Ahmadi, M. A. El-Sayed, J. T. Khoury, and R. L. Whetten, J. Phys. Chem. B 101, 3713 (1997).
    [13] M. Valden, X. Lai, and D. W. Goodman, Science 281, 1647 (1998).
    [14] A. L. Mackay, Acta Crystallogr. 15, 916 (1962).
    [15] H.-S. Nam, N. M. Hwang, B. D. Yu, and J.-K. Yoon, Phys. Rev. Lett. 89, 275502 (2002)
    [16] K. Koga and K. Sugawara, Surf. Sci. 529, 23 (2003).
    [17]Zhonglin Wang, Yi Liu, and Ze Zhang, Handbook of Nanophase and Nano-structureed Materials-Materials Systems and Applications(Ⅰ), Tsinghua University, 2002.
    [18] Yanting Wang, S. Teitel, and Christoph Dellago, J. Chem. Phys. 122, 214722 (2005).
    [19]吳泰伯、許樹恩,X光繞射原理與材料結構分析,三版,中國材料科學學會,2004。
    [20] Charles Kittel, Introduction to Solid State Physics,8th edition, John Wiley & Sons, Inc, 2005.
    [21] 林智仁、羅聖全,「場發射穿透式電子顯微鏡簡介」,工業材料雜誌,201期,90-98頁,2003。
    [22] H. M. Rietveld, J. Appl. Cryst. 2, 65 (1969).
    [23] A. C. Larson, and R. B. Dreele, General Structure Analysis System, Los Alamos National Laboratory, Los Alamos, NM8745 (1990).
    [24] Ramiro Arratia-Perez, Agustin F. Ramos, and G. L. Malli, Phys. Rev. B 39, 3005 (1989).
    [25] V. Sahni, and K.-P. Bohnen, Phys. Rev. B 29, 1045 (1984).
    [26] Manoj K. Harbola, and Viraht Sahni, Phys. Rev. B .37, 745 (1988).
    [27] V. Sahni, and K.-P. Bohnen, Phys. Rev. B 31, 7651 (1985).
    [28]W. P. Halperin, Rev. of Modern Phys. 58, 533 (1986).
    [29] Nicola A. Spaldin, Magnetic Materials, 2002.
    [30] Neil W. Ashcroft, and N. David Mermin, Solid State Physics,
    [31] Steen M?rup, and Cathrine Frandsen, Phys. Rev. Lett. 92, 217201 (2004).
    [32] M.Pereiro, D. Baldomir, and J. E. Arias, Phys. Rev. A 75, 063204 (2007).
    [33]Steen M?rup, and Britt Rosendahl Hansen, Phys. Rev. B 72, 024418 (2005).

    QR CODE
    :::