| 研究生: |
陳建昇 Chien-Sheng Chen |
|---|---|
| 論文名稱: |
高分子分散液晶薄膜用於可調變全像影像之研究 Study of tunable holographic image in polymer dispersed liquid crystal films |
| 指導教授: |
陳啟昌
Chii-Chang Chen 徐桂珠 Kuei-Chu Hsu 鄭益祥 Yih-Shyang Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 高分子分散液晶 、複合全像術 |
| 外文關鍵詞: | holography, polymer dispersed liquid crystal |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們將光聚合物與液晶混合製作成高分子分散液晶
(polymer dispersed liquid crystal, PDLC)薄膜,利用這種材料記錄全像影像資訊,並且藉由外加電壓改變液晶的排列方向,使液晶折射率改變,而做出可由電壓調變的全像片。在實驗方面可分為兩個部分,第一部分為利用高分子分散液晶記錄光柵並分析其光電特性。我們利用NOA61 與E7 混合製作成PDLC薄膜並以雙光束干涉的方式記錄光柵於薄膜中,所記錄的光柵在外加0V 電壓時繞射效率為4.7%,而加入40V 電壓時繞射效率提升至11.4%。
第二部分為複製全像片影像於高分子分散液晶。我們將可360 度
環繞觀賞的成像面圓盤型複合全像片做為複製母片,利用單光束複製
系統,將影像資訊複製於高分子分散液晶中,而隨著外加電壓上升,
影像亮度也隨之提升,具有可由電壓調變的效果。
In this study, we use polymer dispersed liquid crystal (PDLC) films to record holographic image. The PDLC sample is fabricated by using the mixture with photopolymer and liquid crystal. We reorient the director of liquid crystal by applied electric field so that the refraction index of liquid crystal will be changed. Therefore, we can use this material as electric tunable holographic recording medium.
In this experiment, the PDLC sample is fabricated by using the mixture with NOA61 and E7 and it is used to record grating by two-beams interference. At zero field, the diffraction is 4.7%, at 40V applied field, the diffraction is up to 11.4%. In holographic image record, we use 360 degree viewable image-plane disk type multiplex holograms as master hologram, and copy image information from master hologram to PDLC sample by single-beam copying system. The image in PDLC sample can be switched by applied electric field.
[1] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[2] E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and
communication theory,” J. Opt. Soc. Am. 52, 1123 (1962).
[3] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with
continuous-tone objects,” J. Opt. Soc. Am. 53, 1377 (1963).
[4] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with
diffused illumination and three-dimensional objects,” J. Opt. Soc.
Am. 54, 1295 (1964).
[5] S. A. Benton, “Hologram reconstructions with extended light
sources,” J. Opt. Soc. Am. 59, 1545 (1969).
[6] J. T. McCrickerd and N. George, “Holographic Stereogram from
Sequential Component Photographs,” Appl. Phys. Lett. 12, 10
(1968).
[7] D. J. De Bitetto, “Bandwidth reduction of hologram transmission
system by elimination of vertical parallax,” Appl. Phys. Lett. 12,
176 (1968).
[8] R. D. Bahuguna and F. Mendoza-Santoyo, “Simple
rainbow-holographic techniques for two-dimensional
transparencies,” Opt. Lett. 9, 381 (1984).
[9] E. N. Leith and H. Chen, “Deep-image rainbow holograms,” Opt.
Lett. 2, 82 (1978).
[10] R. V. Pole, “3-D imagery and holograms of objects illuminated in
white light,” Appl. Phys. Lett. 10, 20 (1967).
[11] M. Yamaguchi, H. Endoh, T. Honda, and N. Ohyama,
55
“High-quality recording of a full-parallax holographic stereograms
with a digital diffuser,” Opt. Lett. 19, 135 (1994).
[12] M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic
three-dimensional printer: new method,” Appl. Opt. 31, 217 (1992).
[13] M. Yamaguhi, H. Sugiura, T. Honda, and N. Ohyama, “Automatic
recording method for holographic three-dimensional animation,” J.
Opt. Soc. Am. 9, 1200 (1992).
[14] D. J. DeBitetto, “Holographic panoramic stereograms synthesized
from white light recordings,” Appl. Opt. 8, 1740 (1969).
[15] D. J. DeBitetto, “Transmission bandwidth reduction of holographic
stereograms recorded in white light,” Appl. Phys. Lett. 12, 343
(1968).
[16] L. Huff and R. L. Fusek, “Color holographic stereograms,” Opt.
Eng. 19, 691 (1980).
[17] E. N. Leith and P. Voulgaris, “Multiplex holography: some new
methods,” Opt. Eng. 24, 171 (1985).
[18] G. Saxby, Practical Holography, 2nd ed., Prentice-Hall, Englewood
Cliffs, N.J, 308 (1994).
[19] S. A. Benton, “Alcove holograms for computer-aided design,” in
True Three-Dimensional Imaging Techniques and Display
Technologies, D. F. McAllister and W. E. Robbins (eds.), Proc.
SPIE 761, 53 (1987).
[20] N. D. Haig, “Three-dimensional holograms by rotational
multiplexing of two-dimensional films,” Appl. Opt. 12, 419 (1973).
[21] J. Upatnieks, “Edge-illuminated holograms,” Appl. Opt. 31, 1048
(1992).
56
[22] K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi and T. Ose, “Conical
holographic stereograms,” Opt. Commun. 73, 347 (1989).
[23] L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color
conical holographic stereogram,” Opt. Eng. 34, 814 (1995).
[24] L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsuijiuchi,
“Distortion compensation and perspective correction method for a
conical holographic stereogram,” Opt. Eng. 36, 1706 (1997).
[25] Y. S. Cheng, S. Y. Chen, and R. C. Chang, “Distortion correction
for conical multiplex holography using direct object-image
relationship,” Proc. Natl. Sci. (2001).
[26] Y. S. Cheng, W. H. Su, and R. C. Chang, “Disk-type multiplex
holography,” Appl. Opt. 38, 3093 (1999).
[27] T. A. Shankoff, “Phase Holograms in Dichromated Gelatin,” Appl.
Opt. 7, 2101 (1968).
[28] K. S. Pennington, J. S. Harper, and F. P. Laming, “New
Phototechnology Suitable for Recording Phase Holograms and
Similar Information in Hardened Gelatin,” Appl. Phys. Lett. 18, 82
(1971).
[29] D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J.
McClung, “Hologram Recording on Photopolymer Materials” Appl.
Phys. Lett. 14, 159 (1968).
[30] D. Churchill, J. V. Cartmell. “Radiation sensitive display device
containing encapsulated cholesteric liquid crystals,” US Patent
3,578,844, (1971).
[31] J. L. Fergason, “Encapsulated liquid crystal and method,” US
Patent 4,435,047, (1984).
57
[32] R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning,
“Bragg Gratings in an AcrylatePolymer Consisting of Periodic
Polymer-Dispersed Liquid-Crystal Planes,” Chem. Mater. 5, 1533
(1993).
[33] K. Tanaka, K. Kato, M. Date, “Fabrication of holographic polymer
dispersed liquid crystal (HPDLC) with high reflection efficiency,”
Jpn. J. Appl. Phys. 38, 277 (1999).
[34] L. D. Sio, A. Veltri, C. Umeton, S. Serak, and N. Tabiryan,
“All-optical switching of holographic gratings made of
polymer-liquid crystal,” Appl. Phys. Lett. 93, 181115 (2008).
[35] A. Ogiwara, H. Kakiuchida, K. Yoshimura, M. Tazawa, A. Emoto,
and H. Ono, “Effects of thermal modulation on diffraction in liquid
crystal composite gratings,” Appl. Opt. 49, No. 24 / 20 4633
August (2010).
[36] 陳志宏, "產生實像之成像面圓盤型複合全像做片製作與複製研
究," 國立中央大學, 光電科學研究所 (2005).
[37] 松本正一, 角田市良合著, 劉瑞祥譯, "液晶之基礎與應用," 國
立編譯館 (1996).
[38] P. Yeh and A. Yariv, “Optical Waves in crystals,” John Wiley &
Son (1984).
[39] R. J. Colliier, C. B. Burckhardt, L. H. Lin, “Optical Holography,”
New York: Academic Press (1971).
[40] D. K. Yang and S. T. Wu “Fundamentals of Liquid Crystal
Devices,” John Wiley & Sons, Ltd. (2006).
58
[41] http://omlc.ogi.edu/spectra/PhotochemCAD/html/rosebengal.html
[42] P. Mormile, P. Musto, L. Petti, G. Ragosta, P. Villano,
“Electro-optical properties of a PDLC based on unsaturated
polyester resin,” Appl. Phys. B 70, 249 (2000).
[43] J. Klostermana, L.V. Natarajan, V.P. Tondiglia, R.L. Sutherland,
T.J. White,C.A. Guymon, T.J. Bunning, “The influence of
surfactant in reflective HPDLC gratings,” Polymer, 45, 7213
(2004).
[44] J. Li, S. T. Wu, S. Brugioni, R. Meucci, S. Faetti, “Infrared
refractive indices of liquid crystals,” J. Appl. Phys. 97, 073501
(2005).