跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何恭豪
Kung-Hao Ho
論文名稱: 濃度調變對二元合金固液介面形態穩定的影響
Morphological instability in directional solidification under concentration modulation
指導教授: 鍾志昂
Chih-Ang Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 91
語文別: 中文
論文頁數: 90
中文關鍵詞: 固化週期性調變線性穩定分析形態穩定同步次調和
外文關鍵詞: morphological instability, synchronous, subharmonic, modulation, solidification, linear stability analysis
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十年來由於電子商品的市場需求日增,而商品為了朝向輕薄短小的世界潮流,對於電子材料的品質,要求更高的水準,於是許多關於這方面的研究也越來越多;而由於二元合金固化是生產電子材料上,最主要的製程,並且在未來的電子材料及航空工業的需求上,如矽晶圓、氣渦輪葉片,都需要更高的產品品質;如何改良製程獲得高品質的原材,就變的更重要了。然而,在合金固化的過程中,流體的傳遞現象,對於材料的結構及機械性質影響很大,再加上晶體成長過程中還有許多不同形態的缺陷需要去克服,所以合金固化一直受到學術界廣泛的研究。
    而利用單向固化製程,固化合金可以得到晶格排列較整齊以及較佳的機械性質,如較佳的強度;但單向固化製程中,仍然會有缺陷的發生,降低了固化合金的機械性質。而這些缺陷常發生在固化合金中的固液接觸面上,所以我們可以合理的推測,固化時固液介面的形狀改變會對產品的品質有很大的影響,如晶體中差排密度及析出物破裂的形成,均與固液介面的穩定性有關。為了改善這種缺陷的情況,本文將針對合金固化時,研究固液介面的變化情形,並嘗試改變固化系統的參數,分析對固液介面形態不穩定(morphological instability)的影響。
    本文模擬鉛-錫合金單向固化的流場,並假設本系統的單向固化流場作濃度週期性調變,利用解析解的方法,探討這種情況下系統的基態流場的變化,藉此了解此基態流場的特性;接著再對此基態流場作線性穩定分析,來探討固液介面的形態不穩定,並討論系統在濃度週期性調變下特定的變動頻率 值及變動振幅δ值大小,對系統同步及次調和兩種形態不穩定模態之影響。


    In the process of producing electronic products, solidification is one of the most important processes. For the requirement of future electronic material and air industry, such as silicon wafer and turbine, both request better quality manufacturing process. How to improve the manufacturing process effectively has become more significant. In this paper, we analyzed the alteration of the interface in the process of solidification. After that, we changed the parameters of solidification to see if it takes place in the effect of morphological instability.
    We simulated the directional solidification process of Pb-Sn alloy by assuming the modulation of the concentration and temperature in flow field. To understand the characteristics of basic state, we investigated the changes of basic state in this situation by the analytic solution. The two morphological instability modes, synchronous and subharmonic modes, were then investigated by linear stability analysis under specific frequency and amplitude.

    目錄 摘要 目錄 圖目錄 符號說明 第一章 序論 1 1.1 問題描述 1 1.2 文獻回顧 3 1.3 研究目的 6 第二章 濃度週期性調變下之基態流場 8 2.1 問題描述及統御方程式 8 2.2 無因次化數學模式 10 2.3 基態解 12 2.3.1解基態濃度 及固液介面高度 13 2.3.2 按照δ的階數整理 14 2.4 系統基態 19 2.4.1系統 的基態濃度及基態溫度分布 19 2.4.2系統 的基態解 20 2.5 結果與討論 22 第三章 濃度週期性調變之線性穩定分析 24 3.1 線性擾動方程式 24 3.2 線性擾動方程式之求解 30 3.3 線性穩定分析之結果 37 3.3.1 同步模態 38 3.3.2 次調和模態 41 3.4 數值方法 44 3.5 數值計算結果 45 3.6 結果與討論 48 第四章 結論與展望 50 參考文獻 53 附錄一 鉛錫合金計算參數 57 附錄二 Mathematica 計算之結果 58 附錄三 方程式係數整理 60

    1. J. W. Rutter, B. Chalmers, A prismatic substructure formed during solidification of metals,Can.J. Phys.31,15-39(1953).
    2. W. A. Tiller, J. W. Rutter, K. A. Jackson and B. Chalmer, The redistribution of solute atoms during the solidification of metals, Acta Metall. 1,428-437(1953).
    3. W. W.Mullims, R. F. Sekerka, Syability of a planar interface during solidification of a dilute binary alloy,J.Appl. Phys. 35,444-451(1964).
    4. D. J. Wollkind, L. A. Segel, A nonlinear stability analysis of the freezing of a dilute binary alloy, Phil. Trans. R. Soc.
    Lond. A268, 351-380(1970).
    5. R. T. Delves, Theory of stability of a solid-liquid interface during growth from stirred melts, J. Crystal Growth 3,4 562-568(1968).
    6. R. T. Delves, Theory of stability of a solid-liquid interface during growth from stirred meltsΠ, J. Crystal Growth 8, 13-25(1971).
    7. S. R. Coriell, G. B. McFadden, R. F. Boisvert, R. F. Sekerka, Effect of a forced Couette flow on coupled convective and morphological instabilities during unidirectional solidifi- cation, J. Crystal Growth 69, 15-22(1984).
    8. K. Brattkus, S. H. Davis, Flow induced morphological instability: Stagnation-point flows, J. Crystal Growth 89,423-427(1988).
    9. B. T. Murray, S. R. Coriell, G. B. McFadden, The effect of gravity modulation on solutal convection during directional solidification, J. Crystal Growth 110,713-723(1991).
    10. S. A. Forth, A. A. Wheeler, Coupled convective and morphological instability in a simple model of the solidification of a binary alloy, including a shear flow, J. Fluid Mech.236, 61-94(1992).
    11. T. P. Schulze, S. H. Davis, Shear stabilization of morphological instability during directional solidification, J. Crystal Growth 149,253-265(1995).
    12. S. R. Coriell, G. B. McFadden, Applications of morphological stability theory, J. Crystal Growth 8-13, 237-239(2002).
    13. L. R. Morris, W. C. Winegard, The development of cells during the solidification of a dilute Pb-Sn alloy, J. Crystal Growth 5,361-375(1969).
    14. S. R. Coriell, M. R. Cordes, W. J. Boettinger, Convective and interfacial during unidirectional solidification of a binary alloy, J. Crystal Growth 49, 13-28 (1979).
    15. K. Brattkus, S. H. Davis, Cellular growth near absolute stability, Phys. Rev. B 38, 16(1988).
    16. S. A. Forth, A. A. Wheeler, Hydrodynamic and morphological stability of the unidirectional solidification of a freezing binary alloy: a simple model, J. Fluid Mech.202, 339-366 (1989).
    17. S. H. Davis, Hydrodynamic interactions in directional solidification, J. Fluid Mech.212,241-262(1990).
    18. S. H. Davis, T. P. Schulze, Effects of flow on morphological stability during directional solidification, Met. Mater. Trans. A 27, 583-593(1996).
    19. 林樹均等編, 〝材料工程實驗與原理〞, 全華科技(1997).
    20. 賴孟煌,〝搖擺運動對單向固化流動穩定性影響〞, 國立臺灣大學應用力學研究所碩士論文(1998).
    21. 林明獻編著, 〝矽晶圓半導體材料技術〞, 全華科技(1999).
    22. B. T. Murray, S. R. Coriell, A. A. Chernov, G. B. McFadden, The effect of oscillatory shear flow on step bunching, J. Crystal Growth 218, 434-446 (2002).
    23. T. V. Savina, A. A. Nepomnyashchy, S. Brandon, A. A. Golovin, D. R. Lewin, Feedback control of morphological instability, J. Crystal Growth 237-239, 178-180(2002).

    QR CODE
    :::