跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何漢傑
Han-Chieh Ho
論文名稱: N型與P型通道銻化物異質介面場效電晶體磊晶成長與元件特性分析
N- and P- channel Sb-based Heterojunction Field-Effect Transistors: Material Growth and Device Characteristics
指導教授: 辛裕明
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 英文
論文頁數: 96
中文關鍵詞: 銻化物
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高速電子遷移率電晶體的設計概念在1978年被提出,進一步的在1980年利用砷化鋁鎵/砷化鎵 (AlGaAs/GaAs)化合物半導體成功實現此設計概念。隨著磊晶和製程技術的發展,銻化物半導體已被證明具有比砷化鎵半導體更快的電子與電洞遷移率且更低的操作偏壓,極有潛力成為下一代高頻低功率放大器的主力。本論文內容概括銻化物化合物半導體從磊晶成長到元件製作的實驗發展與成果。
    因為缺乏與銻化物晶格常數匹配且絕緣性良好又便宜的基板,我們利用變晶式(metamorphic)分子束磊晶成長技術,成長銻化鋁鎵(AlxGa1-xSb)緩衝層於砷化鎵基板上。因為晶格常數的不匹配,大量的缺陷將從基板與緩衝層的介面產生,因此發展高品質、低缺陷密度的緩衝層,為首要目標。在成功發展緩衝層於砷化鎵基板後,本研究主要分成兩種量子井結構,其一為砷化銦/銻化鋁(InAs/AlSb),主要發展高電子遷移率電晶體,電子遷移率超過25,000 cm2/V-s;其二為銻化銦鎵/銻化鋁(InGaSb/AlSb),主要發展高電洞遷移率電晶體,電洞遷移率超過1200 cm2/V-s,以上實驗結果皆位於世界的領先地位。本研究團隊並成功地證明整合兩種量子井的結構成長於單一砷化鎵基板的技術,和世界上第一次展示的單石整合砷化銦/銻化鋁與銻化銦鎵/銻化鋁元件特性。
    在元件製程發展初期,利用大線寬(2 μm)的光學微影閘極元件調整製程參數與確認磊晶品質。接著導入電子束微影閘極(0.25 μm),提升元件高頻特性。砷化銦/銻化鋁(InAs/AlSb)高電子遷移率電晶體呈現截止頻率(ft)高達105 GHz,銻化銦鎵/銻化鋁(InGaSb/AlSb)高電洞遷移率電晶體呈現截止頻率(ft)高達15 GHz,皆達到世界級的水準。除了展現元件高頻特性之外,研究還包括了藉由觀察不同儲存時期砷化銦/銻化鋁(InAs/AlSb)元件的特性,分析磊晶氧化與元件特性的相關性;緩衝層磊晶品質對於銻化銦鎵/銻化鋁(InGaSb/AlSb)元件特性的影響。


    The development of high electron mobility transistors (HEMTs) started in 1978. Modulation-doped AlGaAs/GaAs heterostructures were immediately demonstrated and revealed the formation of two-dimentional electron gas (2DEG) with enhanced electron mobility. As epitaxy and fabrication technology developed, the advantages of Sb-based devices over conventional GaAs- or InP-based devices are the attainment of high-frequency operation with much lower power consumption. This thesis includes the Sb-based semiconductor developments and results from epitaxial growth to device fabrication.
    Metamorphic AlxGa1-xSb buffer layers were grown on semi-insulating GaAs substrate and accommodated a large number of defects from the lattice mismatch interface. Two quantum well structures were grown on the developed buffer layer. One is InAs/AlSb heterostructure, which has electron mobility over 25,000 cm2/V-s and is applied for n-channel HFET. The other is InGaSb/AlSb heterostructure, which has hole mobility over 1200 cm2/V-s and is applied for p-channel HFET. In additions, we successfully developed the growth technology of monolithic n- and p-channel epitaxy on the same GaAs wafer and first demonstrated the characteristics of n- and p-channel HFETs.
    In the beginning of the fabrication process, large gate-length devices (2 μm) were used to check the quality of epitaxy and adjust the fabricated parameters. After that, e-beam gate devices (0.25 μm) were successfully demonstrated to promote the poteneials of materials. InAs/AlSb and InGaSb/AlSb HFETs exhibited cut-off frequency of 105 GHz and 15 GHz, respectively. Except characteristics of devices, two interesting topics were included. One is that we investigated the device characteristics of InAs/AlSb HFETs subjected to different periods of time storage in atmospheric ambiance after fabrication. The other is that we reported the effect of growth temperature on carrier transport and device characteristics in InGaSb/AlSb heterostructure.

    Abstract (in chinese) II Abstract III Chapter 1 1 Introduction 1 1.1 Introduction 1 1.2 InAs/AlSb HFETs 2 1.3 InGaSb/AlSb HFETs 5 1.4 Scope of Dissertation 11 References………………………………………………………………………………12 Chapter 2 15 Material Growth and Characterization 15 2.1. Introduction 15 2.2. Molecular Beam Epitaxy (MBE) System 15 2.3. Growth Characterization of AlxGa1-xSb Buffer on a GaAs Substrate 18 2.4. Growth Characterization of InAs/AlSb Quantum Wells 26 2.5. Growth Characterization of InGaSb/AlSb Quantum Wells 29 2.6. Growth Characterization of Monolithic Integration of InAs/AlSb and InGaSb/AlSb Quantum Wells on a GaAs substrate 36 2.7. Summary 41 References………………………………………………………………………………42 Chapter 3 45 InAs/AlSb and InGaSb/AlSb Device Results and Characterizations 45 3.1. Introduction 45 3.2. Standard Fabrication Processes of Sb-based HFETs 45 3.3. InAs/AlSb HFETs 49 3.4. InGaSb/AlSb HFETs 63 3.5. Monolithic Devices Characterization 68 3.6. Summary 70 References………………………………………………………………………………71 Chapter 4 73 Conclusions and Future Works 73 4.1. Conclusions 73 4.2. Future works 76 References………………………………………………………………………………81 Appendex A:InAs/AlSb HFET Process Run Sheet 82 Appendex B:InGaSb/AlSb HFET Process Run Sheet 86 Appendex C:Monolithic HFETs Process Run Sheet 90

    [1.1] K. Brennan and K. Hess, “High field transport in GaAs, InP and InAs,” Solid-State Electronics, vol. 27, pp. 347-357, 1984.
    [1.2] Z. Dobrovolskis, K. Grigoras, and A. Krotkus, “Measurement of the hot-electron conductivity in semiconductors using ultrafast electric pulses,” Applied Physics A Solids and Surfaces, vol. 48, pp. 245-249, 1989.
    [1.3] K. J. Goldammer, S. J. Chung, W. K. Liu, M. B. Santos, J. L. Hicks, S. Raymond, and S. Q. Murphy, “High-mobility electron systems in remotely-doped InSb quantum wells,” Journal of Crystal Growth, vol. 201-202, pp. 753-756, 1999.
    [1.4] W. Hansen, T. P. Smith, J. Piao, R. Beresford, and W. I. Wang, “Magnetoresistance measurements of doping symmetry and strain effects in GaSb-AlSb quantum wells,” Applied Physics Letters, vol. 56, pp. 81-83, 1990.
    [1.5] A. S. Filipchenko and L. P. Bolshakov, “Mobility of holes in p-InSb crystals,” physica status solidi (b), vol. 77, pp. 53-58, 1976.
    [1.6] C. R. K. Bolognesi, H. ; English, J. H. , “Well width dependence of electron transport in molecular-beam epitaxially grown InAs/AlSb quantum wells,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 10, pp. 877-879, 1992.
    [1.7] C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English, “Growth of InAs-AlSb quantum wells having both high mobilities and high concentrations,” Journal of Electronic Materials, vol. 22, pp. 255-258, 1993.
    [1.8] R. Tsai, M. Barsky, J. B. Boos, B. R. Bennett, J. Lee, N. A. Papanicolaou, R. Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher, and A. Gutierrez, “Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics,” IEEE Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, pp. 294-297, 2003.
    [1.9] J. B. Boos, B. R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, Y. C. Chou, M. D. Lange, J. M. Yang, R. Bass, D. Park, and B. V. Shanabrook, “Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications,” IEICE Transactions on Electronics, vol. E91-C, pp. 1050-1057, 2008.
    [1.10] W. R. Deal, R. Tsai, M. D. Lange, J. B. Boos, B. R. Bennett, and A. Gutierrez, “A W-band InAs/AlSb low-noise/low-power amplifier,” IEEE Microwave and Wireless Components Letters, vol. 15, pp. 208-210, 2005.
    [1.11] B. Y. Ma, J. Bergman, P. S. Chen, J. B. Hacker, G. Sullivan, and B. Brar, “Ultra-Wideband Ultra-Low-DC-Power High Gain Differential-Input Low Noise Amplifier MMIC Using InAs/AlSb HEMT,” IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 1-4, 2007.
    [1.12] P. P. Ruden, M. Shur, D. K. Arch, R. R. Daniels, D. E. Grider, and T. E. Nohava, “Quantum-well p-channel AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors,” IEEE Transactions on Electron Devices, vol. 36, pp. 2371-2379, 1989.
    [1.13] T. J. Drummond, T. E. Zipperian, I. J. Fritz, J. E. Schirber, and T. A. Plut, “p-channel, strained quantum well field-effect transistor,” Applied Physics Letters, vol. 49, pp. 461-463, 1986.
    [1.14] M. Jaffe, J. E. Oh, J. Pamulapati, J. Singh, and P. Bhattacharya, “In-plane hole effective masses in InxGa1−xAs/Al0.15Ga0.85As modulation-doped heterostructures,” Applied Physics Letters, vol. 54, pp. 2345-2347, 1989.
    [1.15] L. F. Luo, K. F. Longenbach and W. I. Wang, “p-channel modulation-doped field-effect transistors based on AlSb0.9As0.1/GaSb,” IEEE Electron Device Lett., vol. 11, no. 12, pp. 567-569, 1990
    [1.16] B. R. Bennett, M. G. Ancona, J. B. Boos, and B. V. Shanabrook, “Mobility enhancement in strained p-InGaSb quantum wells,” Applied Physics Letters, vol. 91, pp. 042104-042106, 2007.
    [1.17] B. R. Bennett, M. G. Ancona, J. B. Boos, C. B. Canedy, and S. A. Khan, “Strained GaSb/AlAsSb quantum wells for p-channel field-effect transistors,” Journal of Crystal Growth, vol. 311, pp. 47-53, 2008.
    [1.18] M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, and R. Chau, “High-performance 40 nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC = 0.5V) logic applications,” in IEDM Tech. Dig., pp. 1–4, 2008.

    [2.1] David J. Y. Feng, “N-type Modulation-Doped InGaAlAs/InP Strain-Balanced Multiple Quantum Wells for Photonic Integrated Circuits,” Ph.D. dissertation, National Sun Yat-sen University, 2008.
    [2.2] Y. C. Chou, J. M. Yang, M. D. Lange, S. S. Tsui, D. L. Leung, C. H. Lin, M. Wojtowicz, and A. K. Oki, “Degradation mechanisms of 0.1 μm AlSb/InAs HEMTS for ultralow-power applications,” IEEE International Reliability Physics Symposium, pp. 436-440, 2008.
    [2.3] S. Miya, S. Muramatsu, N. Kuze, K. Nagase, T. Iwabuchi, A. Ichii, M. Ozaki, and I. Shibasaki, “AIGaAsSb Buffer/Barrier on GaAs substrate for InAs channel devices with high electron mobility and practical reliability,” Journal of Electronic Materials, vol. 25, pp. 415-420, 1996.
    [2.4] G. Tuttle, H. Kroemer, and J. H. English, “Effects of interface layer sequencing on the transport properties of InAs/AlSb quantum wells: Evidence for antisite donors at the InAs/AlSb interface,” Journal of Applied Physics, vol. 67, pp. 3032-3034, 1990.
    [2.5] B. R. Bennett, S. A. Khan, J. B. Boos, N. A. Papanicolaou, and V. V. Kuznetsov, “AlGaSb Buffer Layers for Sb-Based Transistors,” Journal of Electronic Materials, vol. 39, pp. 2196-2202, 2010.
    [2.6] B. R. Bennett, R. Magno, J. B. Boos, W. Kruppa, and M. G. Ancona, “Antimonide-based compound semiconductors for electronic devices: A review,” Solid-State Electronics, vol. 49, pp. 1875-1895, 2005.
    [2.7] B. R. Bennett, M. G. Ancona, J. B. Boos, and B. V. Shanabrook, “Mobility enhancement in strained p-InGaSb quantum wells,” Applied Physics Letters, vol. 91, pp. 042104-042106, 2007.
    [2.8] M. Radosavljevic, T. Ashley, A. Andreev, S. D. Coomber, G. Dewey, M. T. Emeny, M. Fearn, D. G. Hayes, K. P. Hilton, M. K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S. J. Smith, M. J. Uren, D. J. Wallis, P. J. Wilding, and R. Chau, “High-performance 40 nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC = 0.5V) logic applications,” in IEDM Tech. Dig., pp. 1–4, 2008.
    [2.9] J. D. Wiley, “Chapter 2 mobility of holes in III–V compounds,” Semicond. Semimetals, vol. 10, pp. 91–174, 1974
    [2.10] G. Tuttle, H. Kroemer, and J. H. English, “Electron concentrations and mobilities in AlSb/InAs/AlSb quantum wells,” Journal of Applied Physics, vol. 65, pp. 5239-5241, 1989.
    [2.11] C. R. Bolognesi, H. Kroemer, and J. H. English, “Interface roughness scattering in InAs/AlSb quantum wells,” Applied Physics Letters, vol. 61, pp. 213-215, 1992.
    [2.12] P. R. Berger, K. Chang, P. Bhattacharya, J. Singh, and K. K. Bajaj, “Role of strain and growth conditions on the growth front profile of InxGa1−xAs on GaAs during the pseudomorphic growth regime,” Applied Physics Letters, vol. 53, pp. 684-686, 1988.
    [2.13] M. J. Ekenstedt, S. M. Wang, and T. G. Andersson, “Temperature-dependent critical layer thickness for In0.36Ga0.64As/GaAs single quantum wells,” Applied Physics Letters, vol. 58, pp. 854-856, 1991.
    [2.14] C. M. Engelhardt, D. Többen, M. Aschauer, F. Schäffler, G. Abstreiter, and E. Gornik, “High mobility 2-D hole gases in strained Ge channels on Si substrates studied by magnetotransport and cyclotron resonance,” Solid-State Electronics, vol. 37, pp. 949-952, 1994.
    [2.15] S. Madhavi, V. Venkataraman, and Y. H. Xie, “High room-temperature hole mobility in Ge0.7Si0.3/Ge/Ge0.7Si0.3 modulation-doped heterostructures,” Journal of Applied Physics, vol. 89, pp. 2497-2499, 2001.
    [2.16] J. B. Boos, B. R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, Y. C. Chou, M. D. Lange, J. M. Yang, R. Bass, D. Park, and B. V. Shanabrook, “Sb-Based n- and p-Channel Heterostructure FETs for High-Speed, Low-Power Applications,” IEICE Transactions on Electronics, vol. E91-C, pp. 1050-1057, 2008.
    [2.17] R. Tsai, M. Barsky, J. B. Boos, B. R. Bennett, J. Lee, N. A. Papanicolaou, R. Magno, C. Namba, P. H. Liu, D. Park, R. Grundbacher, and A. Gutierrez, “Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics,“ IEEE Proc. GaAs IC Symp., pp.294-297, 2003.
    [2.18] J. Bergman, G. Nagy, G. Sullivan, B. Brar, C. Kadow, H.-K. Lin, A. C. Gossard, and M. Rodwell, “InAs/AlSb HFETs with fτ and fmax above 150 GHz for low-power MMICs,” IEEE Proc. 15th Int. Conf. on InP and Related Mater., pp. 219-222, 2003.
    [2.19] Y. Royter, K. R. Elliott, P. W. Deelman, R. D. Rajavel, D. H. Chow, I. Milosavljevic, C. H. Fields, “High frequency InAs-channel HEMTs for low power ICs,” Int. Electron Dev. Meet., pp. 30.7.1-30.7.4, 2003.
    [2.20] P.-Y. Chen, “Gate shrinking and device charactrtization for antimonide based HEMTs development,” Master thesis, National Central University, 2011.

    [3.1] P.-Y. Chen, “Gate shrinking and device charactrtization for antimonide based HEMTs development,” Master thesis, National Central University, 2011.
    [3.2] C. R. Bolognesi, M. W. Dvorak, and D. H. Chow, “Impact ionization suppression by quantum confinement: Effects on the DC and microwave performance of narrow-gap channel InAs/AlSb HFET's,” IEEE Transactions on Electron Devices, vol. 46, pp. 826-832, 1999.
    [3.3] H. K. Lin, C. Kadow, J. U. Bae, M. J. W. Rodwell, A. C. Gossard, B. Brar, G. Sullivan, G. Nagy, and J. Bergman, “Design and characteristics of strained InAs/InAlAs composite-channel heterostructure field-effect transistors,” Journal of Applied Physics, vol. 97, pp. 024505-024508, 2005.
    [3.4] H. K. Lin, C. Kadow, M. Dahlström, J. U. Bae, M. J. W. Rodwell, A. C. Gossard, B. Brar, G. Sullivan, G. Nagy, and J. Bergman, “InAs/InAsP composite channels for antimonide-based field-effect transistors,” Applied Physics Letters, vol. 84, pp. 437-439, 2004.
    [3.5] J. B. Boos, M. J. Yang, B. R. Bennett, D. Park, W. Kruppa, and R. Bass, “Low-voltage, high-speed AlSb/InAsSb HEMTs,” Electronics Letters, vol. 35, pp. 847-848, 1999.
    [3.6] H.-K. Lin, Y.-C. Lin, F.-H. Huang, T.-W. Fan, P.-C. Chiu, J.-I. Chyi C.-H. Ko, T.-M. Kuan, M.-K. Hsieh, W.-C. Lee, and C. H. Wann, “Gate Leakage Lowering and Kink Current Suppression for Antimonide-Based Field-Effect Transistors,” Solid-State Electronics, vol. 54, pp. 475-478, 2010.
    [3.7] B. Brar and H. Kroemer, “Influence of Impact Ionization on the Drain Conductance in InAs-AlSb Quantum-Well Heterostructure Field-Effect Transistors,” IEEE Electron Device Letters, vol. 16, pp. 548-550, 1995.
    [3.8] M. H. Somerville, A. Ernst, and J. A. del Alamo, “A physical model for the kink effect in InAlAs/InGaAs HEMTs,” IEEE Transactions on Electron Devices, vol. 47, pp. 922-930, 2000.
    [3.9] G. Meneghesso, G. Verzellesi, R. Pierobon, F. Rampazzo, A. Chini, U. K. Mishra, C. Canali, and E. Zanoni, “Surface-Related Drain Current Dispersion Effects in AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol. 51, pp. 1554-1561, 2004.
    [3.10] N. Igau, V. Ciupina, G. Prodan, “Structural, optical and electrical properties of Sb2O3 thin films with different thickness,” Journal of Optoelectronics and Advanced Materials. vol. 8, pp. 37-42, 2006.
    [3.11] Klein, “Electronic properties of In2O3 surfaces,” Applied Physics Letters, vol. 77, pp. 2009-2011, 2000.
    [3.12] M. Malmkvist, E. Lefebvre, M. Borg, L. Desplanque, X. Wallart, G. Dambrine, S. Bollaert, J. Grahn, “Characterization of insulated-gate versus Schottky-gate InAs/AlSb HEMTs,” IEEE Microwave Integrated Circuit Conference. pp. 24-27, 2007.
    [3.13] R. Ventury, N. Q. Zhang, S. Keller, and U. K. Mishra, “The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs,” IEEE Transactions on Electron Devices, vol. 48, pp.560-566, 2001.
    [3.14] Z.-Y. Gao, “Development and analysis for P- channel Sb-based Heterojunction Field-Effect Transistors,” Master Thesis, National Central University, 2012.
    [4.1] X. Li, K. F. Longenbach, Y. Wang, and W. I. Wang, “High-breakdown-voltage AlSbAs/InAs n-channel field-effect transistors,” IEEE Electron Device Letters, vol. 13, pp. 192-194, 1992.
    [4.2] J. A. del Alamo, “Nanometre-scale electronics with III-V compound semiconductors,” Nature, vol. 479, pp. 317-23, 2011.
    [4.3] P.-Y. Chen, “Gate shrinking and device charactrtization for antimonide based HEMTs development,” Master thesis, National Central University, 2011.
    [4.4] A. Nainani, Y. Sun, T. Irisawa, Z. Yuan, M. Kobayashi, P. Pianetta, B. R. Bennett, J. B. Boos, and K. C. Saraswat, “Device quality Sb-based compound semiconductor surface: A comparative study of chemical cleaning,” Journal of Applied Physics, vol. 109, pp. 114908-114908-7, 2011.
    [4.5] N. Li, E. S. Harmon, J. Hyland, D. B. Salzman, T. P. Ma, Y. Xuan, and P. D. Ye, “Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 Dielectric,” Applied Physics Letters, vol. 92, pp. 143507-143509, 2008.
    [4.6] Y.-K. Chen, “Development and characteriszation of N- and P- channel Sb-based metal -insulator-semiconductor heterojunction field-Effect transistors,” Master thesis, National Central University, 2012.
    [4.7] Z.-Y. Gao, "Development and analysis for P- channel Sb-based heterojunction field-effect transistors," Master thesis, National Central University, 2012.

    QR CODE
    :::