跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉鎔維
Jung-Wei Liu
論文名稱: 模糊系統H∞靜態輸出回授控制器設計─齊次多項式尤拉法
H∞ Static Output Feedback Controller Design of Fuzzy Systems Via Homogeneous Euler's Method
指導教授: 羅吉昌
Ji-Chang Lo
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 非二次穩定平方和Takagi-Sugeno模糊系統尤拉齊次多項式定理H∞狀態回授控制H∞靜態輸出回授控制
外文關鍵詞: non-quadratic stability, sum of squares, T-S fuzzy systems, Euler's Theorem for Homogeneous Function, H∞ state feedback control, H∞ static output feedback control
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究連續模糊系統之靜態輸出回授控制器設計,使用
    非二次李亞普諾夫函數(non-quadratic Lyapunov function) 及其對時間的變化率做為穩定的條件, 並滿足H1 性能指標。本論文分為兩個步驟設計靜態輸出回授控制器,步驟一: 求得狀態回授增益,使用二
    次李亞普諾夫函數(quadratic Lyapunov function) ,步驟二: 求解靜態輸出回授增益, 使用非二次李亞普諾夫函數(non-quadratic Lyapunov function),其中以尤拉齊次多項式定理建立非二次李亞普諾夫函數(non-quadratic Lyapunov function),其形式為
    V (x) = x'P(x)x = 1/(g(g-1))x'∇xxV (x)x。
    電腦模擬方面以平方和方法(Sum-of-Squares) 來檢驗模糊系統的
    穩定條件,並設計出狀態回授控制器以及靜態輸出回授控制器。


    The main contribution in this thesis is static output feedback controller
    design of H1 continuous fuzzy system. And we can solve the inequalities derived from non-quadratic Lyapunov function and its time gradient. It’s a two-step procedure for solving output feedback control gain, step 1: solve for state feedback gain (for common P theorem), step 2: solve for static output feedback gain (for homogeneous polynomial P(x) theorem). A non-quadratic Lyapunov function derived from
    Euler’s homogeneous polynomial theorem has following form
    V (x) = x'P(x)x = 1/(g(g-1))x'∇xxV (x)x。
    In numerical simulation, we solve for state feedback gain first and then solve for static output feedback gain with sum-of-squares approach.

    中文摘要............................................................................................. i 英文摘要............................................................................................. ii 謝誌.................................................................................................... iii 目錄.................................................................................................... iv 圖目錄................................................................................................ vi 1、背景介紹......................................................................... 1 1.1 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文結構. . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 符號標記. . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 預備定理. . . . . . . . . . . . . . . . . . . . . . . . 5 2、系統架構與檢測條件...................................................... 7 2.1 模糊系統架構簡介. . . . . . . . . . . . . . . . . . . 7 2.2 尤拉齊次多項式定理. . . . . . . . . . . . . . . . . 8 2.3 H1 狀態/靜態輸出迴授控制系統. . . . . . . . . . . 12 2.4 主要定理. . . . . . . . . . . . . . . . . . . . . . . . 17 3、模糊建模方法及平方和檢測法........................................ 24 3.1 泰勒級數模糊. . . . . . . . . . . . . . . . . . . . . 24 3.2 平方和檢驗法. . . . . . . . . . . . . . . . . . . . . 26 3.3 平方和檢驗法之定理2.1 穩定度條件. . . . . . . . . 30 3.4 平方和檢驗法之定理2.2 穩定度條件. . . . . . . . . 31 4、電腦模擬......................................................................... 34 4.1 例題一. . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 例題二. . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3 例題三. . . . . . . . . . . . . . . . . . . . . . . . . 47 4.4 例題四. . . . . . . . . . . . . . . . . . . . . . . . . 53 5、結論與未來方向.............................................................. 59 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 未來研究方向. . . . . . . . . . . . . . . . . . . . . 61 文獻.................................................................................................... 62

    [1] K. Tanaka, H. Yoshida, H.Ohtake and H.O.Wang, “A sum-ofsquares
    approach to modeling and control nonlinear dynamical systems
    with polynomial fuzzy systems ,” IEEE Transactions on fuzzy
    systems vol. 17, pp.911–922, August. 2009.
    [2] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its
    applications to modelling and control,” IEEE Trans. Syst., Man,
    Cybern., vol. 15, no. 1, pp. 116–132, Jan. 1985.
    [3] M. Sugeno and G. Kang, “Structure identification of fuzzy model,”
    Fuzzy Set and Systems, vol. 28, pp. 15–33, 1988.
    [4] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy
    control systems,” Fuzzy Set and Systems, vol. 45, pp. 135–156, 1992.
    [5] W. Haddad and D. Bernstein, “Explicit construction of quadratic
    Lyapunov functions for the small gain, positive, circle and Popov
    theorems and their application to robust stability. Part II: discretetime
    theory,” Int’l J. of Robust and Nonlinear Control, vol. 4, pp.
    249–265, 1994.
    [6] S. Prajna, A. Papachristodoulou, and P. Parrilo, “Introducing SOSTOOLS:
    a general purpose sum of squares programming solver,” in
    Proc of IEEE CDC, Montreal, Ca, Jul. 2002, pp. 741–746.
    [7] S. Prajna, A. Papachristodoulou, and et al, “New developments on
    sum of squares optimization and SOSTOOLS,” in Proc. the 2004
    American Control Conference, 2004, pp. 5606–5611.
    [8] Sala, Antonio, and C. Ario. ”Polynomial fuzzy models for nonlinear
    control: a Taylor series approach.” Fuzzy Systems, IEEE Transactions
    on 17.6 (2009): 1284-1295.
    [9] H. Ichihara and E. Nobuyama, “A computational approach to state
    feedback synthesis for nonlinear systems based on matrix sum of
    squares relaxations,” Proc. 17th Int’l Symposium on Mathematical
    Theory of Network and Systems pp. 932–937, Kyoto, Japan, 2006.
    [10] H. Ichihara, “Observer design for polynomial systems using convex
    optimization,” in Proc. of the 46th IEEE CDC, New Orleans, LA,
    Dec. 2007, pp. 5347–5352.
    [11] X. Liu and Q. Zhang, “New approaches to H1 controller designs
    based on fuzzy observers for T-S fuzzy systems via LMI,” Automatica,
    vol. 39, pp. 1571–1582, 2003.
    [12] H. Ichihara and E. Nobuyama, “A computational approach to state
    feedback synthesis for nonlinear systems based on matrix sum of
    squares relaxations,” in Proc. 17th Int’l Symposium on Mathematical
    Theory of Network and Systems, Kyoto, Japan, 2006, pp. 932–
    937.
    [13] S. Prajna, A. Papachristodoulou and F. Wu, “Nonlinear control
    synthesis by sum of squares optimization: A Lyapunov-based Approach,”
    in Proc. 5th Asian Control Conference, 2004, pp. 157–165.
    [14] J.Renz and F.Allgower, “Polynomial Feedback and Observer Design
    using Nonquadratic Lyapunov Functions ,” 44th IEEE Coference
    on Decision and Control, and the European Control Conference
    2005 pp.7587–7592, December. 2005.
    [15] K.C. Border, “Euler’s Theorem for Homogeneous Functions ,” October.
    2000.
    [16] Cristiano M. Agulhari, Ricardo C. L. F. Oliveira and Pedro L. D.
    Peres, “Static output feedback control of polytopic systems using
    polynomial Lyapunov functions,” IEEE Conference on Decision and
    Control Network and Systems, pp. 6894–6901, December. 2010.
    [17] Dan Zhao and Jian-Liang Wang, “Robust static output feedback
    design for polynomial nonlinear systems,” Int’l J. of Robust and
    Nonlinear Control, vol. 20, pp. 1637–1654, November. 2009.
    [18] Yong-Yan Cao, James Lamà and You-Xiam Sun, “Static Output
    Feedback Stabilization: An ILMI Approach,” Automatica, vol. 34,
    pp. 1641–1645, 1998.
    [19] Ji-Chang Lo and Min-Long Lin, “Robust H infinity Nonlinear Control
    via Fuzzy Static Output Feedback,” IEEE Trans on circuits
    and systems, vol. 50, no. 11, pp. 1494–1502, November. 2003.
    [20] Shih-Wei Kau, Hung-Jen Lee, Ching-Mao Yang, Ching-Hsiang Lee,
    Lin Hong, Chun-Hsiung Fang, “Robust H infinity fuzzy static output
    feedback control of T-S fuzzy systems with parametric uncertainties,”
    Fuzzy Set and Systems, vol. 158, pp. 135–146, 2006.
    [21] Bor-Sen Chen, Senior Member, “Mixed H2/H infinity Fuzzy Output
    Feedback Control Design for Nonlinear Dynamic Systems: An LMI
    Approach,” IEEE Trans on fuzzy systems, vol. 8, no. 3, pp. 249–265,
    June. 2000.
    [22] Kazuo Tanaka, Hiroshi Ohtake, Toshiaki Seo, Motoyasu Tanaka,
    Hua O Wang, “Polynomial fuzzy observer design: A sum-of-squares
    approach.,” System, Man, and Cybernetics, Part B: Cybernetics,
    IEEE Transactions on, 42(5):1330-1342, 2012.
    [23] HUANG Wen-Chao, SUN Hong-Fei, ZENG Jian-Ping, “Robust
    Control Synthesis of Polynomial Nonlinear Systems Using Sum of
    Squares Technique,” Acta Automatica Sinica, vol. 39, no. 6, pp.
    799–804, June. 2013.
    [24] Antonio Sala, “Polynomial Fuzzy Models for Nonlinear Control: A
    Taylor Series Approach,” IEEE Trans on fuzzy systems, vol. 17,
    no. 6, pp. 1284–1295, June. 2009.
    [25] J.R. Wan and J.C. Lo, “LMI relaxations for nonlinear fuzzy control
    systems via homogeneous polynomials,” The 2008 IEEE World
    Congress on Computational Intelligence,FUZZ2008, pp. 134—140,
    Hong Kong, June. 2008.
    [26] V.F. Montagner and R.C.L.F Oliveira and P.L.D., “Necessary and
    sufficient LMI conditions to compute quadratically stabilizing state
    feedback controller for Takagi-sugeno systems,” Proc. of the 2007
    American Control Conference, pp. 4059–4064, July. 2007.
    [27] T. M. Guerra and L. Vermeiren, “LMI-based relaxed nonquadratic
    stabilization conditions for nonlinear systems in the Takagi-
    Sugeno’s form,” Automatica., vol. 40, pp. 823–829, 2004.
    [28] B.C. Ding and H. Sun and P Yang, “Further studies on LMI-based
    relaxed stabilization conditions for nonlinear systems in Takagisugeno’s
    form ,” Automatica vol. 43, pp. 503–508, August. 2006.
    [29] X. Chang and G. Yang, “FA descriptor representation approach to
    observer-based H∞ control synthesis for discrete-time fuzzy systems,”
    Fuzzy Set and Systems vol. 185, no. 1, pp.38–51, 2010.
    [30] B. Ding, “Homogeneous Polynomially Nonquadratic Stabilization of
    Discrete-Time Takagi–Sugeno Systems via Nonparallel Distributed
    Compensation Law,” IEEE Transactions on fuzzy systems vol. 18,
    no. 5, pp. 994–1000, August. 2010.
    [31] J. Pan, S. Fei, A. Jaadari and T. M. Guerra, “Nonquadratic stabilization
    of continuous T-S fuzzy models: LMI solution for local
    approach ,” IEEE Transactions on fuzzy systems vol. 20, no. 3, pp.
    594–602, 2012.
    [32] D. H. Lee, J. B. Park and Y. H. Joo, “Approaches to extended
    non-quadratic stability and stabilization conditions for discrete-time
    Takagi-Sugeno fuzzy systems ,” Automatica vol. 47,no. 3, pp.534–
    538, 2011.
    [33] M. Johansson and A. Rantzer and K.-E. Arzen, “Piecewise
    quadratic stability of fuzzy systems,” IEEE Transactions on fuzzy
    systems vol. 7, no. 6, pp. 713–722, December. 1999.
    [34] G. Feng, “Controller synthesis of fuzzy dynamic systems based on
    piecewise Lyapunov functions ,” IEEE Trans. Circuits and Syst. I:
    Fundamental Theory and Applications vol. 11, no. 5, pp. 605–612,
    August. 2003.
    [35] G. Feng, C. Chen, D. Sun and Y. Zhu, “H1 controller synthesis
    of fuzzy dynamic systems based on piecewise Lyapunov functions
    and bilinear matrix inequalities,” IEEE Trans. Circuits and Syst.
    I: Fundamental Theory and Applications vol. 13,no. 1, pp. 94–103,
    2005.
    [36] K. Tanaka and H. Yoshida and H. Ohtake and H. O. Wang, “A sum
    of squares approach to modeling and control of nonlinear dynamical
    systems with polynomial fuzzy systems,” IEEE Transactions on
    fuzzy systems vol. 17,no. 4, pp. 911–922, August. 2009.
    [37] J. Xu and K.Y. Lum and et al, “A SOS-based approach to residual
    generators for discrete-time polynomial nonlinear systems ,” Proc.
    of the 46th IEEE CDC,New Orleans pp.372–344, December. 2007.
    [38] J. Xie, L. Xie and Y. Wang, “ Synthesis of discrete-time nonlinear
    systems: A SOS approach,” Proc. of the 2007 American Control
    Conference New York, pp. 4829–4834, July. 2007.
    [39] K. Tanaka and H. Yoshida “Stabilization of polynomial fuzzy systems
    via a sum of squares approach ,” Proc. of the 22nd Int’l Symposium
    on Intelligent Control Part of IEEE Multi-conference on
    Systems and Control pp. 160–165, Singapore, October, 2007.
    [40] C.W.J. Hol and C.W. Scherer, “Sum of squares relaxations for polynomial
    semidefinite programming,” Proc.of MTNS pp. 1–10, 2004.
    [41] C. Ebenbauer and J. Renz and F. Allgower, “Polynomial Feedback
    and Observer Design using Nonquadratic Lyapunov Functions,”
    44th IEEE Conference on Decision and Control, and the European
    Control Conference 2005 pp.7587–7592, 2005.
    [42] K. Tanaka and H.O. Wang, “Fuzzy Control Systems Design and
    Analysis: A Linear Matrix Inequality Approach,” pp. 69–76, New
    York, NY, 2001.
    [43] H.O. Wang and K. Tanaka and M.F. Griffin, “An approach to fuzzy
    control of nonlinear systems: stability and design issues,” IEEE
    Trans. Fuzzy Systems, vol. 4, no. 1, pp. 14–23, Feb. 1996.
    [44] P.A. Parrilo, “Structured Semidefinite Programs and Semialgebraic
    Geometry Methods in Robustness and Optimization,” Caltech,
    Pasadena, CA, May 2000.

    QR CODE
    :::