跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊舜翔
Shun-Hsiang Yang
論文名稱: 協同真空萃取技術與添加劑效應製備高效能且穩定的超音波噴塗法鈣鈦礦太陽能電池
Synergistic Effects of Vacuum-Assisted Method and Additive Engineering Towards Efficient and Stable Spray-Coated Perovskite Solar Cell
指導教授: 李岱洲
Tai-Chou Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 148
中文關鍵詞: 鈣鈦礦
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因為鈣鈦礦太陽能電池的效率飛速提升,因此鈣鈦礦被視為最有潛力的太陽能電池材料之一。除了效率比肩主流的多晶矽太陽能電池,可溶液製程也是其最大的優勢,因為溶液製程在製備上可以大幅的降低成本,使得鈣鈦礦太陽能電池更符合商業化的需求。但目前鈣鈦礦太陽能電池在大面積與連續生產方面仍然缺乏取得高品質薄膜的製程方法,並且在穩定性方面表現依然不佳。
    是故,本實驗透過超音波噴塗法來製備大面積的鈣鈦礦前驅液濕膜,並使用真空萃取技術將濕膜中多餘的溶劑萃取出來,使得結晶成核與退火長晶的過程分開,再於前驅液中加入MACl(methylammonium chloride)使得鈣鈦礦薄膜的長晶時間得以延長,而得到光滑緻密的薄膜。在製程優化後,再經由添加添加劑的方式來提升薄膜的品質與穩定性,這邊我們選擇的添加劑是離子液體BMIMBF4 (1-butyl-3-methylimidazolium tetrafluoroborate)。最後我們得到了最高的光電轉換效率17.26%,並且從太陽能電池特性曲線得到開路電壓0.99 V、短路電流密度22.19 mA cm-2以及填充因子79.39%。這次的實驗很好的提升了大面積生產下的薄膜品質與穩定性,並且增加了鈣鈦礦太陽能電池商業化的可能性。


    Metal halide perovskite solar cell have attracted great interest in these years due to its high efficiency and solution process. Now, research focus shifts onto issue related to commercialization. Scalable deposition methods and the stability of device become the most important point to manufacture large-area devices. However, scalable deposition methods usually suffer from non-continuous and non-uniform film, the defect in the film also harm the device stability. In this work, ultrasonic spray-coating method is used to fabricate CH3NH3PbI3 perovskite active layer. The perovskite precursor is optimized with different concentration of methylammonium chloride (MACl) and ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4). In the process, the deposited wet film is treated with vacuum-extraction method to extract redundant solvent, at the same time, MACl will interact with lead iodide (PbI2) and methylammonium iodide (MAI) to form a stable and uniform intermediate-state thin film. Then put the substrate on the hot plate, the slowly volatilization of MACl will retard the crystal growth, meanwhile, BMIMBF4 can passivate the defects at surface and grain boundary, finally, we will get a high quality perovskite thin film. The champion device with a power conservation efficiency of 17.26% has been achieved, and show fill factor up to 79%. This study demonstrate the importance of precrystallization for scalable spray-coating technique to achieve good reproducibility, and significantly improve the stability by BMIMBF4.

    摘要 i Abstract ii 謝誌 iii 目錄 i 圖目錄 iv 表目錄 ix 第一章 緒論 1 1-1前言 1 1-2太陽能電池的分類與發展 2 1-3太陽能電池工作原理及特性 8 1-3-1 工作原理 8 1-3-2 輸出特性 9 第二章 文獻回顧 13 2-1鈣鈦礦太陽能電池簡介 13 2-1-1 鈣鈦礦的發展沿革 13 2-1-2鈣鈦礦材料的結構介紹 16 2-1-3 鈣鈦礦材料優點與特性 19 2-1-4 鈣鈦礦太陽能電池元件結構 21 2-2鈣鈦礦薄膜製程介紹 24 2-2-1一步驟前驅物沉積法 25 2-2-2 兩步驟順序沉積法 27 2-2-3 雙源共蒸鍍沉積法 28 2-2-4 蒸氣輔助溶液加工法 29 2-3大面積溶液塗佈方法介紹 31 2-3-1 半月板塗佈法 32 2-3-2 噴墨印刷法 35 2-3-3 網板印刷法 36 2-3-4 噴塗法 37 2-4鈣鈦礦成核長晶控制方法介紹 43 2-4-1 反溶劑萃取法 44 2-4-2 加熱法 46 2-4-3 氣體吹拂法 47 2-4-4 真空萃取法 48 2-5鈣鈦礦薄膜添加劑介紹 50 2-5-1 路易斯酸 52 2-5-2 路易斯鹼 57 2-5-3 銨鹽類 63 2-5-4 低維度鈣鈦礦 66 2-5-5 離子液體 68 2-6研究動機 75 第三章 實驗與研究方法 77 3-1實驗藥品與溶劑 77 3-2實驗儀器 78 3-2-1元件製作儀器 78 3-2-2元件測量儀器 79 3-3-3超音波噴塗霧化設備 80 3-3實驗步驟及方法 81 3-3-1鈣鈦礦前驅物溶液配置 81 3-3-2鈣鈦礦太陽能電池元件製備 84 3-3-3鈣鈦礦太陽能電池元件量測 90 第四章 結果與討論 92 4-1真空萃取法之影響 92 4-2 MACl添加於鈣鈦礦前驅液之影響 97 4-3 BMIMBF4添加於鈣鈦礦前驅液之影響 107 第五章 結論 123 第六章 參考資料 125

    [1] R. Perez, M. Perez, The IEA SHC Solar Update 2009, 50.
    [2] A. K. Chilvery, A. K. Batra, B. Yang, K. Xiao, P. Guggilla, M. D. Aggarwal, R. Surabhi, R. B. Lal, J. R. Currie, B. G. Penn, J. Photonics Energy 2015, 5, 057402.
    [3] NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html, accessed.
    [4] Q. Wang, Y. Xie, F. Soltani-Kordshuli, M. Eslamian, Renewable Sustainable Energy Rev. 2016, 56, 347.
    [5] D. Bartesaghi, I. del Carmen Pérez, J. Kniepert, S. Roland, M. Turbiez, D. Neher, L. J. A. Koster, Nat. Commun. 2015, 6, 7083.
    [6] A. Kojima, K. Teshima, T. Miyasaka, Y. Shirai, presented at ECS Meet. Abstr. 2006.
    [7] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
    [8] H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, Sci. Rep. 2012, 2, 591.
    [9] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Science 2012, 338, 643.
    [10] J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nature 2013, 499, 316.
    [11] H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 2014, 345, 542.
    [12] P. Wang, Y. Wu, B. Cai, Q. Ma, X. Zheng, W. H. Zhang, Adv. Funct. Mater. 2019, 29, 1807661.
    [13] A. Bhalla, R. Guo, R. Roy, Mater. Res. Innovations 2000, 4, 3.
    [14] C. A. Randall, A. Bhalla, T. R. Shrout, L. Cross, Ferroelectr., Lett. Sect. 1990, 11, 103.
    [15] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2016, 28, 284.
    [16] Q. Chen, N. De Marco, Y. M. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou, Y. Yang, Nano Today 2015, 10, 355.
    [17] M. A. Green, A. Ho-Baillie, H. J. Snaith, Nat. Photonics 2014, 8, 506.
    [18] A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith, R. J. Nicholas, Nat. Phys. 2015, 11, 582.
    [19] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Science 2013, 342, 341.
    [20] Y. S. Jung, K. Hwang, Y. J. Heo, J. E. Kim, D. Vak, D. Y. Kim, Adv. Opt. Mater. 2018, 6, 1701182.
    [21] M. Liu, M. B. Johnston, H. J. Snaith, Nature 2013, 501, 395.
    [22] Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang, J. Huang, Energy Environ. Sci. 2015, 8, 2464.
    [23] J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. M. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Nat. Nanotechnol. 2016, 11, 75.
    [24] W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, Science 2015, 350, 944.
    [25] N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, Nat. Mater. 2014, 13, 897.
    [26] M. Jamal, M. Bashar, A. M. Hasan, Z. A. Almutairi, H. F. Alharbi, N. H. Alharthi, M. R. Karim, H. Misran, N. Amin, K. B. Sopian, Renewable Sustainable Energy Rev. 2018, 98, 469.
    [27] L. Hu, J. Peng, W. Wang, Z. Xia, J. Yuan, J. Lu, X. Huang, W. Ma, H. Song, W. Chen, ACS Photonics 2014, 1, 547.
    [28] N. Ahn, S. M. Kang, J.-W. Lee, M. Choi, N.-G. Park, J. Mater. Chem. A 2015, 3, 19901.
    [29] Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li, Y. Yang, J. Am. Chem. Soc. 2014, 136, 622.
    [30] H. Hu, M. Singh, X. Wan, J. Tang, C.-W. Chu, G. Li, J. Mater. Chem. A 2020, 8, 1578.
    [31] D. Li, D. Zhang, K. S. Lim, Y. Hu, Y. Rong, A. Mei, N. G. Park, H. Han, Adv. Funct. Mater. 2020, 31, 2008621.
    [32] Z. Yang, C. C. Chueh, F. Zuo, J. H. Kim, P. W. Liang, A. K. Y. Jen, Adv. Energy Mater. 2015, 5, 1500328.
    [33] D. Khim, H. Han, K. J. Baeg, J. Kim, S. W. Kwak, D. Y. Kim, Y. Y. Noh, Adv. Mater. 2013, 25, 4302.
    [34] G. Cotella, J. Baker, D. Worsley, F. De Rossi, C. Pleydell-Pearce, M. Carnie, T. Watson, Sol. Energy Mater. Sol. Cells 2017, 159, 362.
    [35] X. Peng, J. Yuan, S. Shen, M. Gao, A. S. Chesman, H. Yin, J. Cheng, Q. Zhang, D. Angmo, Adv. Funct. Mater. 2017, 27, 1703704.
    [36] S. C. Hong, G. Lee, K. Ha, J. Yoon, N. Ahn, W. Cho, M. Park, M. Choi, ACS Appl. Mater. Interfaces 2017, 9, 7879.
    [37] J. H. Heo, M. H. Lee, M. H. Jang, S. H. Im, J. Mater. Chem. A 2016, 4, 17636.
    [38] H. Cai, X. Liang, X. Ye, J. Su, J. Guan, J. Yang, Y. Liu, X. Zhou, R. Han, J. Ni, ACS Appl. Energy Mater. 2020, 3, 9696.
    [39] A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. Dunbar, A. R. Buckley, D. G. Lidzey, Energy Environ. Sci. 2014, 7, 2944.
    [40] M. Ramesh, K. M. Boopathi, T.-Y. Huang, Y.-C. Huang, C.-S. Tsao, C.-W. Chu, ACS Appl. Mater. Interfaces 2015, 7, 2359.
    [41] S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, T. Aytug, D. B. Geohegan, K. Xiao, ACS Photonics 2015, 2, 680.
    [42] J. Tait, S. Manghooli, W. Qiu, L. Rakocevic, L. Kootstra, M. Jaysankar, C. M. De La Huerta, U. W. Paetzold, R. Gehlhaar, D. Cheyns, J. Mater. Chem. A 2016, 4, 3792.
    [43] X. Xia, W. Wu, H. Li, B. Zheng, Y. Xue, J. Xu, D. Zhang, C. Gao, X. Liu, RSC Adv. 2016, 6, 14792.
    [44] B. Abdollahi Nejand, S. Gharibzadeh, V. Ahmadi, H. R. Shahverdi, J. Phys. Chem. C 2016, 120, 2520.
    [45] J. E. Bishop, D. K. Mohamad, M. Wong-Stringer, A. Smith, D. G. Lidzey, Sci. Rep. 2017, 7, 7962.
    [46] Z. Bi, Z. Liang, X. Xu, Z. Chai, H. Jin, D. Xu, J. Li, M. Li, G. Xu, Sol. Energy Mater. Sol. Cells 2017, 162, 13.
    [47] P.-Y. Lin, Y.-Y. Chen, T.-F. Guo, Y.-S. Fu, L.-C. Lai, C.-K. Lee, RSC Adv. 2017, 7, 10985.
    [48] L.-H. Chou, X.-F. Wang, I. Osaka, C.-G. Wu, C.-L. Liu, ACS Appl. Mater. Interfaces 2018, 10, 38042.
    [49] S. a. Uličná, B. Dou, D. H. Kim, K. Zhu, J. M. Walls, J. W. Bowers, M. F. van Hest, ACS Appl. Energy Mater. 2018, 1, 1853.
    [50] J. E. Bishop, J. A. Smith, C. Greenland, V. Kumar, N. Vaenas, O. S. Game, T. J. Routledge, M. Wong-Stringer, C. Rodenburg, D. G. Lidzey, ACS Appl. Mater. Interfaces 2018, 10, 39428.
    [51] S. Han, H. Kim, S. Lee, C. Kim, ACS Appl. Mater. Interfaces 2018, 10, 7281.
    [52] Y. Jiang, C. Wu, L. Li, K. Wang, Z. Tao, F. Gao, W. Cheng, J. Cheng, X.-Y. Zhao, S. Priya, Nano Energy 2018, 53, 440.
    [53] M. Park, W. Cho, G. Lee, S. C. Hong, M. c. Kim, J. Yoon, N. Ahn, M. Choi, Small 2019, 15, 1804005.
    [54] Y.-S. Chou, L.-H. Chou, A.-Z. Guo, X.-F. Wang, I. Osaka, C.-G. Wu, C.-L. Liu, ACS Sustainable Chem. Eng. 2019, 7, 14217.
    [55] J. Su, H. Cai, X. Ye, X. Zhou, J. Yang, D. Wang, J. Ni, J. Li, J. Zhang, ACS Appl. Mater. Interfaces 2019, 11, 10689.
    [56] J. E. Bishop, C. D. Read, J. A. Smith, T. J. Routledge, D. G. Lidzey, Sci. Rep. 2020, 10, 6610.
    [57] X. Yu, X. Yan, J. Xiao, Z. Ku, J. Zhong, W. Li, F. Huang, Y. Peng, Y.-B. Cheng, J. Chem. Phys. 2020, 153, 014706.
    [58] J. H. Heo, F. Zhang, C. Xiao, S. J. Heo, J. K. Park, J. J. Berry, K. Zhu, S. H. Im, Joule 2021, 5, 481.
    [59] Y.-T. Yu, S.-H. Yang, L.-H. Chou, I. Osaka, X.-F. Wang, C.-L. Liu, ACS Appl. Energy Mater. 2021.
    [60] C. Wu, K. Wang, Y. Jiang, D. Yang, Y. Hou, T. Ye, C. S. Han, B. Chi, L. Zhao, S. Wang, Adv. Funct. Mater. 2021, 31, 2006803.
    [61] A. Z. Guo, L. H. Chou, S. H. Yang, D. Wang, X. F. Wang, I. Osaka, H. W. Lin, C. L. Liu, Adv. Mater. Interfaces 2021, 8, 2001509.
    [62] I. A. Howard, T. Abzieher, I. M. Hossain, H. Eggers, F. Schackmar, S. Ternes, B. S. Richards, U. Lemmer, U. W. Paetzold, Adv. Mater. 2019, 31, 1806702.
    [63] Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. van Hest, K. Zhu, Nat. Rev. Mater. 2018, 3, 18017.
    [64] L.-Y. Wang, L.-L. Deng, X. Wang, T. Wang, H.-R. Liu, S.-M. Dai, Z. Xing, S.-Y. Xie, R.-B. Huang, L.-S. Zheng, Nanoscale 2017, 9, 17893.
    [65] Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao, J. Huang, Nat. Energy 2018, 3, 560.
    [66] W. Nie, H. Tsai, R. Asadpour, J.-C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, Science 2015, 347, 522.
    [67] P. W. K. Fong, H. Hu, Z. Ren, K. Liu, L. Cui, T. Bi, Q. Liang, Z. Wu, J. Hao, G. Li, Adv. Sci. 2021, 8, 2003359.
    [68] E. Parvazian, A. Abdollah-zadeh, H. R. Akbari, N. Taghavinia, Sol. Energy Mater. Sol. Cells 2019, 191, 148.
    [69] X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 353, 58.
    [70] F. Guo, S. Qiu, J. Hu, H. Wang, B. Cai, J. Li, X. Yuan, X. Liu, K. Forberich, C. J. Brabec, Adv. Sci. 2019, 6, 1901067.
    [71] F. Zhang, K. Zhu, Adv. Energy Mater. 2020, 10, 1902579.
    [72] D. Luo, R. Su, W. Zhang, Q. Gong, R. Zhu, Nat. Rev. Mater. 2020, 5, 44.
    [73] Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Nano Lett. 2014, 14, 4158.
    [74] Y. C. Kim, N. J. Jeon, J. H. Noh, W. S. Yang, J. Seo, J. S. Yun, A. Ho‐Baillie, S. Huang, M. A. Green, J. Seidel, Adv. Energy Mater. 2016, 6, 1502104.
    [75] M. Abdi-Jalebi, Z. Andaji-Garmaroudi, S. Cacovich, C. Stavrakas, B. Philippe, J. M. Richter, M. Alsari, E. P. Booker, E. M. Hutter, A. J. Pearson, Nature 2018, 555, 497.
    [76] D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, H. Shin, D. Lee, N.-G. Park, J. Am. Chem. Soc. 2018, 140, 1358.
    [77] a) C. Liu, W. Li, H. Li, C. Zhang, J. Fan, Y. Mai, Nanoscale 2017, 9, 13967; b) K. Wang, C. Liu, P. Du, J. Zheng, X. Gong, Energy Environ. Sci. 2015, 8, 1245; c) M. Li, Y.-H. Chao, T. Kang, Z.-K. Wang, Y.-G. Yang, S.-L. Feng, Y. Hu, X.-Y. Gao, L.-S. Liao, C.-S. Hsu, J. Mater. Chem. A 2016, 4, 15088.
    [78] C.-H. Chiang, C.-G. Wu, Nat. Photonics 2016, 10, 196.
    [79] M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, Science 2016, 354, 206.
    [80] N. Li, S. Tao, Y. Chen, X. Niu, C. K. Onwudinanti, C. Hu, Z. Qiu, Z. Xu, G. Zheng, L. Wang, Nat. Energy 2019, 4, 408.
    [81] L. Wang, H. Zhou, J. Hu, B. Huang, M. Sun, B. Dong, G. Zheng, Y. Huang, Y. Chen, L. Li, Science 2019, 363, 265.
    [82] X. Liu, F. Lin, C.-C. Chueh, Q. Chen, T. Zhao, P.-W. Liang, Z. Zhu, Y. Sun, A. K.-Y. Jen, Nano Energy 2016, 30, 417.
    [83] F. Zhang, W. Shi, J. Luo, N. Pellet, C. Yi, X. Li, X. Zhao, T. J. S. Dennis, X. Li, S. Wang, Adv. Mater. 2017, 29, 1606806.
    [84] Q. Fu, S. Xiao, X. Tang, Y. Chen, T. Hu, ACS Appl. Mater. Interfaces 2019, 11, 24782.
    [85] B. Li, D. Binks, G. Cao, J. Tian, Small 2019, 15, 1903613.
    [86] J. Yang, S. Xiong, T. Qu, Y. Zhang, X. He, X. Guo, Q. Zhao, S. Braun, J. Chen, J. Xu, ACS Appl. Mater. Interfaces 2019, 11, 13491.
    [87] I. Wharf, T. Gramstad, R. Makhija, M. Onyszchuk, Can. J. Chem. 1976, 54, 3430.
    [88] N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith, ACS Nano 2014, 8, 9815.
    [89] H. Zhang, J. Cheng, D. Li, F. Lin, J. Mao, C. Liang, A. K. Y. Jen, M. Grätzel, W. C. Choy, Adv. Mater. 2017, 29, 1604695.
    [90] X. Liu, J. Wu, Y. Yang, T. Wu, Q. Guo, J. Power Sources 2018, 399, 144.
    [91] N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi, N.-G. Park, J. Am. Chem. Soc. 2015, 137, 8696.
    [92] D. Bi, C. Yi, J. Luo, J.-D. Décoppet, F. Zhang, S. M. Zakeeruddin, X. Li, A. Hagfeldt, M. Grätzel, Nat. Energy 2016, 1, 16142.
    [93] J.-W. Lee, S.-H. Bae, Y.-T. Hsieh, N. De Marco, M. Wang, P. Sun, Y. Yang, Chem 2017, 3, 290.
    [94] J.-W. Lee, Z. Dai, C. Lee, H. M. Lee, T.-H. Han, N. De Marco, O. Lin, C. S. Choi, B. Dunn, J. Koh, J. Am. Chem. Soc. 2018, 140, 6317.
    [95] T. Niu, J. Lu, R. Munir, J. Li, D. Barrit, X. Zhang, H. Hu, Z. Yang, A. Amassian, K. Zhao, Adv. Mater. 2018, 30, 1706576.
    [96] R. Wang, J. Xue, L. Meng, J.-W. Lee, Z. Zhao, P. Sun, L. Cai, T. Huang, Z. Wang, Z.-K. Wang, Joule 2019, 3, 1464.
    [97] T. Y. Wen, S. Yang, P. F. Liu, L. J. Tang, H. W. Qiao, X. Chen, X. H. Yang, Y. Hou, H. G. Yang, Adv. Energy Mater. 2018, 8, 1703143.
    [98] L. Meng, C. Sun, R. Wang, W. Huang, Z. Zhao, P. Sun, T. Huang, J. Xue, J.-W. Lee, C. Zhu, J. Am. Chem. Soc. 2018, 140, 17255.
    [99] S. Wang, Z. Ma, B. Liu, W. Wu, Y. Zhu, R. Ma, C. Wang, Sol. RRL 2018, 2, 1800034.
    [100] H. Zhu, F. Zhang, Y. Xiao, S. Wang, X. Li, J. Mater. Chem. A 2018, 6, 4971.
    [101] M. Qin, J. Cao, T. Zhang, J. Mai, T. K. Lau, S. Zhou, Y. Zhou, J. Wang, Y. J. Hsu, N. Zhao, Adv. Energy Mater. 2018, 8, 1703399.
    [102] T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng, D. Cui, X. Yang, L. Han, Adv. Energy Mater. 2019, 9, 1803766.
    [103] L. Zuo, H. Guo, D. W. deQuilettes, S. Jariwala, N. De Marco, S. Dong, R. DeBlock, D. S. Ginger, B. Dunn, M. Wang, Sci. Adv. 2017, 3, e1700106.
    [104] Y.-H. Wu, X.-Q. Shi, X.-H. Ding, Y.-K. Ren, T. Hayat, A. Alsaedi, Y. Ding, P. Xu, S.-Y. Dai, ACS Appl. Mater. Interfaces 2018, 10, 3602.
    [105] W.-Q. Wu, Z. Yang, P. N. Rudd, Y. Shao, X. Dai, H. Wei, J. Zhao, Y. Fang, Q. Wang, Y. Liu, Sci. Adv. 2019, 5, eaav8925.
    [106] S. Yang, J. Dai, Z. Yu, Y. Shao, Y. Zhou, X. Xiao, X. C. Zeng, J. Huang, J. Am. Chem. Soc. 2019, 141, 5781.
    [107] P. Guo, Q. Ye, X. Yang, J. Zhang, F. Xu, D. Shchukin, B. Wei, H. Wang, J. Mater. Chem. A 2019, 7, 2497.
    [108] E. Aydin, M. De Bastiani, S. De Wolf, Adv. Mater. 2019, 31, 1900428.
    [109] Y. Zhao, K. Zhu, J. Phys. Chem. C 2014, 118, 9412.
    [110] X. Li, M. I. Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han, M. Grätzel, Nat. Chem. 2015, 7, 703.
    [111] D.-Y. Son, J.-W. Lee, Y. J. Choi, I.-H. Jang, S. Lee, P. J. Yoo, H. Shin, N. Ahn, M. Choi, D. Kim, Nat. Energy 2016, 1, 16081.
    [112] Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, Adv. Mater. 2017, 29, 1703852.
    [113] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, Nat. Energy 2017, 2, 17102.
    [114] M. M. Tavakoli, M. Saliba, P. Yadav, P. Holzhey, A. Hagfeldt, S. M. Zakeeruddin, M. Grätzel, Adv. Energy Mater. 2019, 9, 1802646.
    [115] H. Lai, B. Kan, T. Liu, N. Zheng, Z. Xie, T. Zhou, X. Wan, X. Zhang, Y. Liu, Y. Chen, J. Am. Chem. Soc. 2018, 140, 11639.
    [116] Y. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang, T. Jiu, M. Yuan, J. Chen, Joule 2018, 2, 1356.
    [117] D. H. Kim, C. P. Muzzillo, J. Tong, A. F. Palmstrom, B. W. Larson, C. Choi, S. P. Harvey, S. Glynn, J. B. Whitaker, F. Zhang, Joule 2019, 3, 1734.
    [118] D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo, M. Grätzel, A. Hagfeldt, M. K. Nazeeruddin, Adv. Mater. 2016, 28, 2910.
    [119] H. Zai, C. Zhu, H. Xie, Y. Zhao, C. Shi, Z. Chen, X. Ke, M. Sui, C. Chen, J. Hu, ACS Energy Lett. 2017, 3, 30.
    [120] J.-W. Lee, Z. Dai, T.-H. Han, C. Choi, S.-Y. Chang, S.-J. Lee, N. De Marco, H. Zhao, P. Sun, Y. Huang, Nat. Commun. 2018, 9, 3021.
    [121] T. Niu, J. Lu, M.-C. Tang, D. Barrit, D.-M. Smilgies, Z. Yang, J. Li, Y. Fan, T. Luo, I. McCulloch, Energy Environ. Sci. 2018, 11, 3358.
    [122] D. S. Lee, J. S. Yun, J. Kim, A. M. Soufiani, S. Chen, Y. Cho, X. Deng, J. Seidel, S. Lim, S. Huang, ACS Energy Lett. 2018, 3, 647.
    [123] A. Thote, I. Jeon, J.-W. Lee, S. Seo, H.-S. Lin, Y. Yang, H. Daiguji, S. Maruyama, Y. Matsuo, ACS Appl. Energy Mater. 2019, 2, 2486.
    [124] Y. Zhang, G. Grancini, Z. Fei, E. Shirzadi, X. Liu, E. Oveisi, F. F. Tirani, R. Scopelliti, Y. Feng, M. K. Nazeeruddin, Nano Energy 2019, 58, 105.
    [125] T. Niu, L. Chao, W. Gao, C. Ran, L. Song, Y. Chen, L. Fu, W. Huang, ACS Energy Lett. 2021, 6, 1453.
    [126] M. Shahiduzzaman, K. Yamamoto, Y. Furumoto, T. Kuwabara, K. Takahashi, T. Taima, RSC Adv. 2015, 5, 77495.
    [127] Y. Wan, S. Dong, Y. Wang, L. Yang, W. Qin, H. Cao, C. Yao, Z. Ge, S. Yin, RSC Adv. 2016, 6, 97848.
    [128] M. Salado, F. J. Ramos, V. M. Manzanares, P. Gao, M. K. Nazeeruddin, P. J. Dyson, S. Ahmad, ChemSusChem 2016, 9, 2708.
    [129] M. Salado, M. A. Fernández, J. P. Holgado, S. Kazim, M. K. Nazeeruddin, P. J. Dyson, S. Ahmad, ChemSusChem 2017, 10, 3846.
    [130] Y. Zhang, Z. Fei, P. Gao, Y. Lee, F. F. Tirani, R. Scopelliti, Y. Feng, P. J. Dyson, M. K. Nazeeruddin, Adv. Mater. 2017, 29, 1702157.
    [131] M. Shahiduzzaman, K. Yamamoto, Y. Furumoto, K. Yonezawa, K. Hamada, K. Kuroda, K. Ninomiya, M. Karakawa, T. Kuwabara, K. Takahashi, Org. Electron. 2017, 48, 147.
    [132] P. Chen, Y. Zhang, J. Du, Y. Wang, X. Zhang, Y. Liu, J. Phys. Chem. C 2018, 122, 10699.
    [133] S. Wang, Z. Li, Y. Zhang, X. Liu, J. Han, X. Li, Z. Liu, S. Liu, W. C. Choy, Adv. Funct. Mater. 2019, 29, 1900417.
    [134] X. Zhou, Y. Wang, C. Li, T. Wu, Chem. Eng. J. 2019, 372, 46.
    [135] R. Xia, Z. Fei, N. Drigo, F. D. Bobbink, Z. Huang, R. Jasiūnas, M. Franckevičius, V. Gulbinas, M. Mensi, X. Fang, Adv. Funct. Mater. 2019, 29, 1902021.
    [136] S. Bai, P. Da, C. Li, Z. Wang, Z. Yuan, F. Fu, M. Kawecki, X. Liu, N. Sakai, J. T.-W. Wang, Nature 2019, 571, 245.
    [137] J. Wang, X. Ye, Y. Wang, Z. Wang, W. Wong, C. Li, Electrochim. Acta 2019, 303, 133.
    [138] C. Luo, G. Li, L. Chen, J. Dong, M. Yu, C. Xu, Y. Yao, M. Wang, Q. Song, S. Zhang, Sustainable Energy Fuels 2020, 4, 3971.
    [139] S. Akin, E. Akman, S. Sonmezoglu, Adv. Funct. Mater. 2020, 30, 2002964.
    [140] Y.-H. Lin, N. Sakai, P. Da, J. Wu, H. C. Sansom, A. J. Ramadan, S. Mahesh, J. Liu, R. D. Oliver, J. Lim, Science 2020, 369, 96.
    [141] S. Wang, B. Yang, J. Han, Z. He, T. Li, Q. Cao, J. Yang, J. Suo, X. Li, Z. Liu, Energy Environ. Sci. 2020, 13, 5068.
    [142] R. Xia, X. X. Gao, Y. Zhang, N. Drigo, V. I. Queloz, F. F. Tirani, R. Scopelliti, Z. Huang, X. Fang, S. Kinge, Adv. Mater. 2020, 32, 2003801.
    [143] N. Ali, C. Liang, C. Ji, H. Zhang, M. Sun, D. Li, F. You, Z. He, Org. Electron. 2020, 84, 105805.
    [144] X. Zheng, T. Jiang, L. Bai, X. Chen, Z. Chen, X. Xu, D. Song, X. Xu, B. Li, Y. M. Yang, RSC Adv. 2020, 10, 18400.
    [145] M. Shahiduzzaman, L. Wang, S. Fukaya, E. Y. Muslih, A. Kogo, M. Nakano, M. Karakawa, K. Takahashi, K. Tomita, J.-M. Nunzi, ACS Appl. Mater. Interfaces 2021, 13, 21194.
    [146] X. Xia, J. Peng, Q. Wan, X. Wang, Z. Fan, J. Zhao, F. Li, ACS Appl. Mater. Interfaces 2021, 13, 17677.
    [147] Z. Lin, Y. Su, R. Dai, G. Liu, J. Yang, W. Sheng, Y. Zhong, L. Tan, Y. Chen, ACS Appl. Mater. Interfaces 2021, 13, 15420.
    [148] T. Li, S. Wang, J. Yang, X. Pu, B. Gao, Z. He, Q. Cao, J. Han, X. Li, Nano Energy 2021, 82, 105742.
    [149] X. Li, C. Li, X. Zhao, Y. Zhang, G. Liu, Z. Zhang, D. Wang, L. Xiao, Z. Chen, B. Qu, ACS Appl. Mater. Interfaces 2021, 13, 4553.

    QR CODE
    :::