跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊文熙
Wen-Hsi Yang
論文名稱: 股票變化之穩健預測
指導教授: 陳玉英
Yu-Ying Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
畢業學年度: 91
語文別: 中文
論文頁數: 51
中文關鍵詞: 經驗振協分解
外文關鍵詞: IMF, EMD
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本文研究股票指數及股票報酬率的預測。由於上述資料屬於非平穩(nonstationary)非線性(nonlinear)時間數列,本文首先參考Huang et al. (1998)提出的經驗協振分解(empirical mode decomposition,記作EMD),取用其中變化量較大的數個本質協振函數(intrinsic mode function,記作IMF),描述上述時間數列。然後藉由配適資料預測未來數值。本文分析的資料除台灣的加權平均股票變化,亦包含美國高科技的那斯達克指數(Nasdaq index)及道瓊工業指數(Dow Jones industrial average index)的變化。


    NONE

    1.1 研究動機………………………………………………...1 1.2 研究方法………………………………………………...3 第二章 文獻回顧………………………………………………………5 2.1 經驗協振分解……………………………….…………..5 2.2 南方震盪指數分析……………………………………...9 第三章 股票指數分析………………………………………………..10 3.1 台灣加權平均指數分析……………………………….10 3.2 道瓊工業平均指數分析……………………………….11 3.3 那斯達克指數分析…………………………………….12 第四章 股票報酬率分析……………………………………………..14 4.1 台灣加權平均指數週報酬率分析…………………….14 4.2 道瓊工業平均指數週報酬率分析…………………….15 4.3 那斯達克指數週報酬率分析………………………….16 第五章 結論…………………………………………………………..18 參考文獻………………………………………………………………..50

    參考資料
    Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. J. Econometrics, 31, 307-327.
    Dahlhaus, R. (1996). On the Kullback-Leibler information divergence of locally stationary processes. Stochastic Process. Appl., 62, 139-168.
    Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1007.
    Fama, E. F. (1965), The behavior of Stock Market Prices. Journal of Business 38, 34-105.
    Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H.-H., Zheng, Q., Yen, N.-C., Tung, C.-C., and Liu, H.-H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. Roy. Soc. London Ser. A, 454, 903-995.
    Kim, W. (1998). Econometric analysis of locally stationary time series models. Manuscript, Yale University.
    Kokoszka, P., and Leipus, R. (2002). Change-point estimation in ARCH models. Bernoulli, 6, 513-539.
    Nason, G. P., von Sachs, R., and Kroisandt, G. (2000). Wavelet processes and adaptive estimation of the evolutionary wavelet spectrum. Journal of the Royal Statistical Society. Series B, 62, 271-292.
    Piotr, F., Modeling and forecasting financial log-returns as locally stationary wavelet processes. Submitted for publication.
    Salisbury, J. I., and Wimbush, M. (2002). Using modern time series analysis techniques to predict ENSO events from the SOI time series. Nonlinear Processes in Geophysics, 9, 341-345.
    Taylor, S. J. (1986). Modeling Financial Time Series. Chichester: Wiley.

    QR CODE
    :::