| 研究生: |
周秀玫 Hsiu-Mei Chou |
|---|---|
| 論文名稱: |
應用氮化鎵奈米柱基板提升氮化鎵發光二極體之電流擴散 Improvement of Current Spreading in GaN-based Light Emitting Diode Grown on Nanorods GaN Template |
| 指導教授: |
郭政煌
Cheng-Huang Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 照明與顯示科技研究所 Graduate Institute of Lighting and Display Science |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 發光二極體 、氮化鎵 、電流擴散 |
| 外文關鍵詞: | GaN, LED, current spreading |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要研究成長不同濃度之n型GaN薄膜於奈米柱GaN/藍寶石基板來改善Planar GaN發光二極體之電流擁擠現象,期望應用在大電流密度下提升整個GaN發光二極體電流擴散之均勻性。文中首先分別成長不同濃度之n型GaN薄膜於傳統GaN基板及奈米柱GaN/藍寶石基板,接著量測分析其n型GaN薄膜在兩者基板之間的材料特性差異,接著成長不同濃度之n型GaN薄膜的GaN發光二極體結構應用在此兩者基板上,並探討不同濃度之n型GaN薄膜對於GaN發光二極體之光電特性表現的差異性。
由GaN發光二極體電流擴散原理得知,使n型GaN薄膜電阻值與表面氧化銦錫( ITO )薄膜電阻值越匹配,其電流分佈越均勻,因此本研究是藉由成長高濃度的n型GaN薄膜來降低n型GaN薄膜之電阻值,而成長較高濃度的n型GaN薄膜會因為過多的Si摻雜而使得薄膜品質較差,為了不讓增加Si摻雜而影響GaN薄膜品質,我們使用奈米柱GaN/藍寶石基板成長GaN薄膜,可抑制薄膜缺陷密度不因摻雜高濃度Si而增加。
我們再利用奈米柱GaN/藍寶石基板成長GaN發光二極體結構,並比較結構中有不同濃度之n型GaN薄膜對於影響電流在GaN發光二極體分佈的均勻性。由量測結果得知,使用奈米柱GaN/藍寶石基板比傳統GaN基板成長之GaN發光二極體,其光輸出功率在20 mA下,由5.8 mW上升至6.5 mW,提高約12%,而在相同使用奈米柱GaN/藍寶石基板,我們調整n型GaN薄膜電阻值使其和氧化銦錫( ITO )薄膜電阻值匹配,其光輸出功率在20 mA下由6.5 mW上升至7.5 mW,順向電壓皆為3.4 V。
經本研究結果得知,使用奈米柱GaN/藍寶石基板所成長的GaN發光二極體與傳統GaN發光二極體有較佳的光電特性表現,且在此奈米柱GaN/藍寶石基板所成長的GaN發光二極體結構下,最佳的 n型GaN薄膜之濃度為1.6╳1019/cm3,並量測大電流密度注入條件下,能改善其電流擁擠現象,使電流分佈更為均勻,增加光輸出功率。
This thesis investigation, we studied the growth of different concentrations of n-type GaN film on the nanorods GaN / sapphire substrate to improve the p-side-up mesa-structure GaN LED of the current crowding, expectations used in high current density to enhance the current spreading uniformity of GaN LED. First, Growth of different concentrations of n-type GaN film on the nanorods GaN / sapphire substrate, the surface morphology and structural characteristics were analyzed.
Next, we make use of theory to calculate the current distribution of different concentrations of n-type GaN film grown on the nanorods GaN / sapphire substrate.When the resistance of n-type GaN film and the transparent current layer were match so that the current is distributed will be even. Therefore, we grow high concentrations of n-type GaN film to reduce the resistance of n-type GaN film, but heavily Si-doped of n-type GaN film could made film quality has poor. So, we using nanorods GaN / sapphire substrate could effectively suppress the threading dislocation density by increasing Si-doped of n-type GaN film.
The measurement results revealed that GaN LED grown on nanorods GaN / sapphire substrate GaN substrate, at 20mA injection current, the optical output power was enhanced by 12%, respectively, compared to those of a conventional LED.We adjusted the different reisistance of n-type GaN film grown on nanorods GaN / sapphire substrate, the light output power was enhanced by 15%, because of changing n-type GaN film resistance could let the current distributed evenly.
[1]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, and Y. Sugimoto, H. Kiyoku, Appl. Phys. Lett., 70, 1417 (1997).
[2]T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys., 38, 3976 (1999).
[3]C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, and G. C. Chi, Electrochem. Solid-State Lett., 11, H269 (2008).
[4]S. Nakamura, T. Mukai, and M. Senoh, J. Appl. Phys., 76, 8189 (1994).
[5]O. H. Nam, M. D. Bremser, T. S. Zheleva, and R. F. Davis, Appl. Phys. Lett., 71, 2638 (1997).
[6]T. S. Zheleva, S. A. Smith, D. B. Thomson, K. J. Linthicum, P. Rajagopal, and R. F. Davis, J. Electron. Mater., 28, L5 (1999).
[7]D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, and C. F. Lin, Appl. Phys. Lett., 89, 161105 (2006).
[8]D. H. Kang, J. C. Song, B. Y. Shim, E. A. Ko, D. W. Kim, S. Kannappan, and C. R. Lee, Jpn. J. Appl. Phys., 46, 2563 (2007).
[9]H. W. Huang, C. C. Kao, T. H. Hsueh, C. C. Yu, C. F. Lin, J. T. Chu, H. C. Kuo, and S. C. Wang, Mater. Sci. Eng., B 113, 125 (2004).
[10] I. Lee, I. Choi, C. Lee, and S. Noh, Appl. Phys. Lett., 71, 1359 (1997).
[11]Z. Chine, A. Rebey, H. Touati, E. Goovaerts, M. Oueslati, B. El Jani, and S. Laugt, Phys. Stat. Sol., (a) 203, 1954 (2006).
[12]施敏,半導體元件物理與製作技術 (2006).
[13]H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, Appl. Phys. Lett., 77, 1903 (2000).
[14]X. Guo and E. F. Schubert, J. Appl. Phys., 90, 4191 (2001).
[15]C. H. Kuo, L. C. Chang, C. W. Kuo, and G. C. Chi, IEEE Photon. Tech. Lett., 22, 257 (2010).
[16]張力權, “GaN薄膜成長於奈米級圖樣化GaN基板之研究”, 國立中央大學光電科學與工程學系, 碩士論文 (2009).
[17]H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, J. Vac. Sci. Technol. B., 24, 1909 (2006).
[18]H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys., 103, 014314 (2008).
[19]J. D. Carey, L. L. Ong, and S. R. P. Silva, Nanotechnology, 14, 1223 (2003).
[20]紀國鐘、蘇炎坤,光電半導體技術手冊 (2002).
[21]L. T. Romano, C. G. Van de Walle, J. W. Ager III, W. Götz and R. S. Kern, J. Appl. Phys., 87, 7745 (2000).
[22]S. Ruvimov, L. W. Zuzanna, T. Suski, J. W. Ager III, and J. Washburn, Appl. Phys. Lett., 69, 990 (1996).
[23]K. Hoshino, N. Yanagita, M. Araki, and K. Tadatomo, J. Cryst. Growth., 298, 232 (2007).
[24]R. F. Davis , T. Gehrke, K. J. Linthicum, T. S. Zheleva, E. A. Preble, P. Rajagopal, C. A. Zorman, and M. Mehregany, J. Cryst. Growth., 225, 134 (2001).
[25]D. K. Schroder, Semiconductor Material And Device Characterization (2006).
[26]J. R. Fernandez, C. Moysés Araújo, A. Ferreira da Silva, J. R. Leite, Bo E. Sernelius, A. Tabata, E. Abramof, V. A. Chitta, C. Persson, R. Ahuja, I. Pepe, D. J. As, T. Frey, D. Schikora, K. Lischka, J. Cryst. Growth., 231, 420 (2001).
[27]H. J. Oh, S. W. Rhee, and I. S. Kang, J. Electrochem. Soc., 139, 6 (1992).
[28]M. Ali, A.E. Romanov, S. Suihkonen, O. Svensk, P. T. Törmä, M. Sopanen, H. Lipsanen, M. A. Odnoblyudov, and V. E. Bougrov, J. Cryst. Growth., 315, 188 (2011).
[29]H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, J. Appl. Phys., 103, 014314 (2008).
[30]C. Kirchner, V. Schwegler, F. Eberhard, M. Kamp, K. J. Ebeling, P. Prystawko, M. Leszczynski, I. Grzegory, and S. Porowski, Prog. Cryst. Growth Ch., 41, 57 (2000).
[31]X. Xu, R. P. Vaudo, J. Flynn, and G. R. Brandes, J. Electron. Mater., 31, 402 (2002).
[32]M. A. Moram, M. J. Kappers, F. Massabuau, R. A. Oliver, and C. J. Humphreys, J. Appl. Phys., 109, 073509 (2011).
[33]M. S. Ferdous, X. Wang, M. N. Fairchild, and S. D. Hersee, Appl. Phys. Lett., 91, 231107 (2007).
[33]G. Kamler, J. Borysiuk, J. L. Weyher, A. Presz, M. Wonziak, and I. Grzegory, J. Appl. Phys., 27, 247 (2004).