跳到主要內容

簡易檢索 / 詳目顯示

研究生: 宋紫熙
Tzu-Hsi Sung
論文名稱: 吸積毫秒脈衝星IGR J17379-3747於2020年爆發之自轉與軌道參數以及隨光強度變化的時間噪音
Spin and Orbital Parameters and Flux-Dependent Timing Noise of Accreting Millisecond X-ray Pulsar IGR J17379-3747 in Its 2020 Outburst
指導教授: 周翊
Yi Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Graduate Institute of Astronomy
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 67
中文關鍵詞: X光毫秒脈衝星時間噪音時序分析雙星軌道參數校正
外文關鍵詞: Accreting Millisecond X-ray Pulsar, Timing Noise, Timing Analysis, binary star, parameter correction
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇論文的研究致力於分析吸積毫秒脈衝星──IGR J17379-3747的脈衝時序特性。它於2020年爆發時,NICER於9月與10月進行觀測。我們對IGR J17379-3747的自轉與軌道參數進行初步的校正,但即使是我們求得的最佳參數解,仍舊無法完好地描述脈衝相位演化,於是我們將相位演化與此次爆發期間的X光光變曲線做比較,發現造成相位偏差的原因可能來自於隨光強度變化的時間噪音。
      我們根據NICER的觀測時間間隔將觀測資料分為三個部分,除了第一部分以外,第二、第三部分的脈衝相位與X光強度都有強烈的線性相關性,只不過第二部分呈現負相關,而第三部分呈現正相關。我們採用Kulkarni & Romanova (2013) 所提供之隨光強度變化的時間噪音模型分別對此三部分進行擬合,即使各部分的趨勢不同,仍能顯著地改善分析結果。
      除此之外,為了估算IGR J17379-3747的磁場大小,我們比較了2018年與2020年兩次爆發期間得到的自轉頻率,並假設非爆發期間的吸積力矩可以被忽略,最終得到的磁場大小為約1.174(46)×10^8 G。


    We report our study on the pulsar timing of the accreting millisecond X-ray pulsar (AMXP) IGR J17379-3747. The observations were made by NICER in September and October during its 2020 outburst. The spin and orbital parameters of this AMXP were first refined but even the optimal parameters cannot well describe the evolution of the pulse phase. In comparison to the flux variation of this outburst, such deviation is likely caused by the flux-dependent timing noise.
    According to the observation time intervals of NICER, we separated the data into three parts. Except for the first part, pulsation phases of the second and third parts have strong correlations with the corresponding count rates but the correlation for the part 2 is negative whereas the part 3 is positive. We applied the flux-dependent timing noise model proposed by Kulkarni & Romanova (2013) for the three parts separately and found that it can significantly improve the fittings although the tendencies of them are different.
    In comparison to the spin frequency detected in 2018 and 2020 outbursts, the magnetic field of the neutron star is estimated as ~1.174(46)×10^8 G under the assumption that accretion torque can be neglected during the quiescent state.

    摘要---I Abstract---II 目錄---III 圖目錄---V 表目錄---VII 第一章、緒論(Introduction)---1 1.1 X光雙星(X-ray Binary)---1 1.1.1 高質量X光雙星(High-mass X-ray Binary, HMXB)---2 1.1.2 低質量X光雙星(Low-mass X-ray binary, LMXB)---6 1.2 脈衝星 (Pulsar)---9 1.2.1 無線電毫秒脈衝星 (Millisecond Radio Pulsar)---11 1.2.2 吸積毫秒X光脈衝星 (Accreting Millisecond X-ray Pulsar, AMXP)---11 1.3 隨光強度變化的時間噪音(Flux-dependent Timing Noise)---15 1.4 IGR J17379-3747---17 1.5 論文簡述(Outline of This Thesis)---18 第二章、觀測與資料處理(Observations and Data Reduction)---19 2.1 NICER---19 2.2 觀測資料(Observations)---22 2.3 資料處理(Data Reduction)---23 第三章、資料分析(Data Analysis)---24 3.1 脈衝抵達延遲技術(Pulse Arrival Delay Technique)---24 3.2 相位分析(Phase Analysis)---26 3.2.1 脈衝測定(Searching for the Pulsation)---26 3.2.2 脈衝波形與相位演化(Pulse Profile and Phase evolution)---28 3.2.3 誤差與蒙地卡羅模擬(Error and Monte Carlo Simulation)---30 3.2.4 參數校正(Parameter Correction)---33 3.3 隨光強度變化的時間噪音(Flux-dependent Timing Noise)---38 3.3.1 時間噪音模型的擬合結果(Fitting Result of Timing Noise Model)---38 3.3.2 依照光強度分段擬合時間噪音(Timing Noise Fitting of Different Parts Depending on Flux)---40 3.4 脈衝強度(Pulse Fraction)---44 第四章、討論(Discussion)---46 4.1 隨光強度改變的時間噪音模型(Flux-dependent Timing Noise Model)---46 4.2 中子星的磁場(Magnetic Field of Neutron Star)---49 4.3 脈衝強度的特性(Property of Pulse Fraction)---51 五、結論(Summary)---54 參考文獻(Reference)---55

    1. Alpar, M. A., Cheng, A. F., Ruderman, M. A., & Shaham, J. 1982, Natur, 300, 728
    2. Backer, D. C., Kulkarni, S. R., Heiles, C., Davis, M. M., & Goss, W. M. 1982, Natur, 300, 615
    3. Bondi, H., & Hoyle, F. 1944, MNRAS, 104, 273
    4. Bult, P. M., Chakrabarty, D., Arzoumanian, Z., et al. 2020a, ApJ, 898, 38
    5. Bult, P. M., Markwardt, C. B., Altamirano, D., et al. 2019, ApJ, 877, 70
    6. Bult, P. M., Sanna, A., Gendreau, K. C. et al, 2020b, ATel, 14056
    7. Chelovekov, I. V., & Grebenev, S. A. 2010, AstL, 36, 895
    8. Chelovekov, I. V., Grebenev, S. A., & Sunyaev, R. A. 2006, AstL, 32, 456
    9. Chou, Y., Chung, Y., Hu, C.-P., & Yang, T.-C. 2008, ApJ, 678, 1316
    10. Galloway, D. K., Cumming, A., Kuulkers, E., et al. 2004, ApJ, 601, 466
    11. Gendreau K. C., Arzoumanian,Z., & Okajima, T. 2012, Proc. SPIE, Vol 8443, 844313
    12. Giacconi, R., Gursky, H., Kellogg, E., et al. 1971, ApJ, 167, L67
    13. Gusinskaia, N. V., Hessels, J. W. T., Jaodand, A. D., et al. 2020, ATel, 14061
    14. Hewish, A., Bell, S. J., Pilkington, J. D. H., et al. 1968, Natur, 217, 709
    15. Krimm, H. A., Kennea, J. A., Evans, P. A., et al. 2008, ATel, 1714
    16. Kulkarni, A. K., & Romanova, M. M. 2013, MNRAS, 433, 3048
    17. Lamb, F. K., Boutloukos, S., Van Wassenhove, S., et al. 2009, ApJL, 705, L36
    18. Manchester, R. N. 2017, JApA, 38, 42
    19. Manchester, R. N., Hobbs, G. B., Teoh, A., & Hobbs, M. 2005, AJ, 129, 1993
    20. Markwardt, C. B. 2004, AIP Conf. Proc., 714, 217
    21. Markwardt, C. B., Krimm, H., Wijnands, R., & Swank, J. H. 2008, ATel, 1709
    22. Mereminskiy, I., Lutovinov, A., Semena, A., et al. 2020, ATel, 14051
    23. Negoro, H., Nakahira, S., Ueno, S., et al. 2018, ATel, 11447
    24. Papitto, A., Ferrigno, C., Bozzo, E., et al. 2013, Natur, 501, 517
    25. Papitto, A., Riggio, A., Di Salvo, T., et al. 2010, MNRAS, 407, 2575
    26. Patruno, A., & Watts, A. L. 2012, arXiv:1206.2727
    27. Patruno, A., Wijnands, R., & van der Klis, M. 2009, ApJ, 698, L60
    28. Radhakrishnan, V., & Srinivasan, G. 1982, CSci, 51, 1096
    29. Sanna, A., Bozzo, E., Papitto, A., et al. 2018, A&A, 616, L17
    30. Sanna, A., Burderi, L., Riggio, A., et al. 2016, MNRAS, 459, 1340
    31. Schreier, E., Levinson, R., Gursky, H., et al. 1972, ApJ, 172, L79
    32. Seidov, Z. F. 2004, ApJ, 603, 283
    33. Seward, F. D., & Charles, P. A., Exploring the X-ray Universe, Cambridge University Press, 2nd, 2010
    34. Shaw, S., Kuulkers, E., Markwardt, C. B., et al. 2008, ATel, 1711
    35. Silaj, J., Jones, C. E., Tycner, C., et al. 2010, ApJ, 187, 228
    36. Strohmayer, T. E., Ray, P. S., Gendreau, K. C., et al. 2018, ATel, 11507
    37. Tse, Kaho, Chou, Yi, & Hsieh, Hung-En 2020, ApJ, 899, 120
    38. Wijnands, R., & van der Klis, M. 1998, Natur, 394, 344

    QR CODE
    :::