| 研究生: |
鐘永彬 Youn-Bin Zhong |
|---|---|
| 論文名稱: |
三角網面為基礎之曲面設計系統發展與應用 |
| 指導教授: |
莊漢東
Han-tung Chuang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 89 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 迪氏網格 、網格三角化 、細化 、平滑化 、植入物 |
| 外文關鍵詞: | Delaunay, Triangulation, Subdivision schemes |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究於Windows作業環境下進行,以C++語言發展程式,並結合VTK (The Visualization Toolkit)圖形處理類別庫來進行系統整合。
The content of this research includes three subtopics: (a) the triangulation base on scattered data is constructed by the rule of “Projective Delaunay Triangulation”, and the smooth strategy for the result is developed. (b) the interactive interface of real-time editing and the clipping of triangulate surface that loads from the CT or STL are developed and applied to cranium implant design. (c) the molding clay surface design interface with the interactive subdivision preview system that combines the real-time subdivision with single/multi control points moving interface is developed.
This research is developed with C++ language and integrated with VTK (The Visualization Toolkit) in the Windows operation system.
[1] Chivate, P.N. and Jablokow, A.G., “Review of surface representations and fitting for reverse engineering”, Computer Integrated Manufacturing Systems, Vol. 8, No. 3, pp. 193-204, 1995.
[2] Choi, B.K., Shin, H.Y., Yoon, Y.I. and Lee,J.W., ”Triangulation of scattered data in 3D space”, Computer-Aided Design, Vol. 20, pp. 239-261, 1988.
[3] Cleynenbreugel, J.V., Verstreken, K., Smet, M.H., Marchal, G. and Suetens, P., “3D imaging and stereolithographic modeling of bony structures for operation planning”, 4th International Workshop on Rapid Prototyping & Computer-Assisted Surgery, 1997.
[4] Dyn, N., Gregory, J.A. and Levin, D., “A butterfly subdivision scheme for surface iterpolation with tension control”, ACM Transactions on Graphics, Vol. 9, No. 2, pp. 160-169, 1990.
[5] Edelsbrunner, H. and Mucke, E.P., “Tree-dimensional Alpha Shapes”, Technical Report Rept. UIUCDCS-R-92-1734, Comput. Sci. Dept., Univ., Illionis, Urbana, Illinois, 1992.
[6] Golias, N.A. and Dutton, R.W., “Delaunay triangulation and 3D adaptive mesh generation”, Finite Elements in Analysis and Design, Vol. 25, pp. 331-341, 1997.
[7] Levin, A., “Combined subdivision schemes for the design of surfaces satisfying boundary conditions”, Computer Aided Geometric Design, No. 16, pp. 345-354, 1999.
[8] Liu, S. and Ma, W., “Seed-growing segmentation of 3-D surfaces from CT-contour data”, Computer-Aided Design, Vol. 31, pp. 517-536, 1999.
[9] Lo, S.H., “Delaunay Triangulation of non-convex planar domains”, International Journal for Numerical Methods in Engineering, Vol. 28, pp. 2695-2707, 1989.
[10] Lorensen, W.E. and Cline, H.E., “Marching Cubes: A High Resolution 3D Surface Construction Algorithm”, Computer Graphics, Vol. 21, No. 3, pp. 163-169, 1987.
[11] Park, H. and Kim, K., “An adaptive method for smooth surface approximation to scattered 3D points”, Computer-Aided Design, Vol. 27, No. 12, pp. 929-939, 1995.
[12] Patricia, M.G. and Alfred, D.L., “3-D Representation and Visualization of the Human Face and applications to Surgery, Morphology, Anthropometrics and Forensic Science”, Contemporary perspectives in Three-Dimensional Biomedical Imaging, ISO Press, 1997.
[13] Qu, R. and Agarwal, R.P., “Smooth surface interpolation to scattered data using interpolatory subdivision algorithms”, Computers Mathematics Application, Vol. 32, No. 3, pp. 93-110, 1996.
[14] Schoreder, W.S., Martin, K. and Loreson, B., The Visulization Tool-kit, Prentice Hall, pp. 158-164, 1997.
[15] Stroud, I. and Xirouchakis, P.C., “STL and extensions”, Advances in Engineering Software No. 31, pp. 83-95, 2000.
[16] Watson, D.F., “Computing the n-dimensional Delaunay tessellation with application to Voronoi polytypes”, Computer Journal, Vol. 24, pp. 167-172, 1981.
[17] 李武松, “顱顏整型手術用植入物之設計與製作”, 碩士論文, 中央大學機械所, 2000.
[18] 邱聰倚, “不規則點資料之曲面擬合與應用”, 碩士論文, 中央大學機械所, 1995.