跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇揚善
Yang-Shan Su
論文名稱: Efficient Two-Way Vertical Handover with Multipath TCP
指導教授: 黃志煒
Chih-Wei Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 58
中文關鍵詞: WLAN3GLTE影音串流無縫換手多路徑傳輸節能
外文關鍵詞: WLAN, mobile, LTE, video streaming, seamless handover, MPTCP, energy efficiency
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著智慧裝置的發展,現在的行動裝置皆具有與各種無線通訊連線的技術,如:WLAN、3G、WiMAX和LTE。使用者在異質網路間可以藉由多路徑傳輸(Multipath-TCP)來獲得可靠以及有效率的影音串流(video streaming)。有兩件事情是使用者想要的:第一,隨時隨地在服務與裝置上可以保持最佳的連線。第二,行動裝置可以持續的連線而且可以無縫換手到另一個網路上。
    多路徑傳輸(Multipath-TCP)是TCP的延伸,它可以利用多界面來同時傳輸且支援使用者可以移動以及換手到另一個網路。但是,多路徑傳輸有吞吐量(throughput)以及電量損耗的問題。我們必須制定一個機制讓MPTCP可以被運用得更完善,因為同時使用多個界面來傳輸會消耗更多的電量。在這篇論文,我們提出一個動態多路徑傳輸控制機制,讓我們在不同網路之間可以無縫換手,而且當網路品質良好時,只使用一種網路服務。透過實作,此篇論文提出的演算法可以提升吞吐量以及節能(energy efficiency)。


    Nowadays, with the evolution of smart devices, mobile nodes are commonly equipped with multiple communication interfaces, for example: WLAN, 3G, WiMAX and LTE. Users and network operators can benefit from multipath TCP to achieve more reliable and efficient video streaming in heterogeneous networks. Two things are the users need. First, it always keeps the best connection in services or devices anywhere at any time. Second, it keeps service continuous and seamless handover to another network interface.
    Multi-path TCP (MPTCP) is an extension of TCP that allows multiple interfaces to transmit simultaneously. MPTCP can support mobility and handover, but MPTCP has throughput and energy consumption problems. We must make a decision to use MPTCP well. But using several interfaces at the same time would cost more energy consumption. In this thesis, we develop a dynamic MPTCP control mechanism to enable seamless vertical handover during network transition and use a single radio technology when stable. Through the implementation, it can improve throughput and energy efficiency.

    1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.3 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Background of Multipath TCP and Handover 3 2.1 MPTCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Protocol Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.3 Connection Establishment . . . . . . . . . . . . . . . . . . . . . . 5 2.1.4 Throughput Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.5 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.6 MPTCP Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.7 Aggregation Technologies . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Handover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.1 Handover Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.2 Seamless Handover . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 The Dynamic Multipath TCP for Vertical Handover 15 3.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 WiFi State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 Cellular State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 MPTCP State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.1 Moving toward WLAN . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.2 Moving toward cellular network . . . . . . . . . . . . . . . . . . . 22 4 Implementation and Performance Estimation 24 4.1 Environment and Platform Validation . . . . . . . . . . . . . . . . . . . . 24 4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2.1 Implementation on WiFi state . . . . . . . . . . . . . . . . . . . . 28 4.2.2 Implementation on cellular state . . . . . . . . . . . . . . . . . . . 28 4.2.3 Implementation on MPTCP state . . . . . . . . . . . . . . . . . . . 29 4.3 Estimation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.4 Throughput Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.5 Energy Efficiency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 Conclusion and Future Work 39 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Bibliography 41

    [1] LTE-WiFi Aggregation. http://www.netmanias.com/
    en/post/reports/8532/laa-lte-lte-u-lwa-mptcp/
    analysis-of-lte-wifi-aggregation-solutions/.
    [2] MultiPath TCP - Linux Kernel implementation. http://www.multipath-tcp.
    org/.
    [3] Network bandwidth requirements for media traffic in Lync Server 2013. https://
    technet.microsoft.com/en-us/library/jj688118(v=ocs.15).aspx, 2013.
    [4] Atiq Ahmed, Leila Merghem Boulahia, and Dominique Gaiti. Enabling vertical handover
    decisions in heterogeneous wireless networks: A state-of-the-art and a classification.
    IEEE Communications Surveys & Tutorials, 16(2):776–811, 2014.
    [5] O Bonaventure. Decoupling TCP from IP with multipath TCP. http://
    multipath-tcp.org/data/MultipathTCP-netsys.pdf/, 2013.
    [6] Shengyang Chen, Zhenhui Yuan, and Gabriel-Miro Muntean. An energy-aware
    multipath-tcp-based content delivery scheme in heterogeneous wireless networks. In
    2013 IEEE Wireless Communications and Networking Conference (WCNC), pages
    1291–1296. IEEE, 2013.
    [7] Tao Ding, Zhenhui Yuan, Shengyang Chen, and Gabriel-Miro Muntean. Smartphone
    energy consumption models for multimedia services using multipath tcp. In 2014
    IEEE 11th Consumer Communications and Networking Conference (CCNC), pages
    239–244. IEEE, 2014.
    [8] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. Tcp extensions
    for multipath operation with multiple addresses. Technical report, 2013.
    [9] Takoua Ghariani and Badii Jouaber. Energy aware cross layer uplink scheduling for
    multihomed environments. In 2013 IEEE Globecom Workshops (GC Wkshps), pages
    861–866. IEEE, 2013.
    [10] Han Ah Kim, Bong-hwan Oh, and Jaiyong Lee. Improvement of mptcp performance
    in heterogeneous network using packet scheduling mechanism. In 2012 18th Asia-
    Pacific Conference on Communications (APCC), pages 842–847. IEEE, 2012.
    [11] Ben Liang, Ahmed H Zahran, and Aladdin OM Saleh. Application signal threshold
    adaptation for vertical handoff in heterogeneous wireless networks. In International
    Conference on Research in Networking, pages 1193–1205. Springer, 2005.
    [12] Yeon-sup Lim, Yung-Chih Chen, Erich M Nahum, Don Towsley, and Richard J
    Gibbens. Improving energy efficiency of mptcp for mobile devices. arXiv preprint
    arXiv:1406.4463, 2014.
    [13] Yeon-sup Lim, Yung-Chih Chen, Erich M Nahum, Don Towsley, Richard J Gibbens,
    and Emmanuel Cecchet. Design, implementation, and evaluation of energy-aware
    multi-path tcp. CoNEXT15, 2015.
    [14] Yeon-sup Lim, Yung-Chih Chen, Erich M Nahum, Don Towsley, and Kang-Won Lee.
    Cross-layer path management in multi-path transport protocol for mobile devices.
    In IEEE INFOCOM 2014-IEEE Conference on Computer Communications, pages
    1815–1823. IEEE, 2014.
    [15] Sinh Chung Nguyen, Xiaofei Zhang, Thi Mai Trang Nguyen, and Guy Pujolle. Evaluation
    of throughput optimization and load sharing of multipath tcp in heterogeneous
    networks. In 2011 Eighth International Conference on Wireless and Optical Communications
    Networks, pages 1–5. IEEE, 2011.
    [16] Christoph Paasch and Olivier Bonaventure. Multipath TCP. Communications of the
    ACM, 57(4):51–57, apr 2014.
    [17] Christoph Paasch, Gregory Detal, Fabien Duchene, Costin Raiciu, and Olivier
    Bonaventure. Exploring mobile/wifi handover with multipath tcp. In Proceedings of
    the 2012 ACM SIGCOMM workshop on Cellular networks: operations, challenges,
    and future design, pages 31–36. ACM, 2012.
    [18] Christopher Pluntke, Lars Eggert, and Niko Kiukkonen. Saving mobile device energy
    with multipath tcp. In Proceedings of the sixth international workshop on MobiArch,
    pages 1–6. ACM, 2011.
    [19] Xiaohuan Yan, Y Ahmet S¸ekercio˘glu, and Sathya Narayanan. A survey of vertical
    handover decision algorithms in fourth generation heterogeneous wireless networks.
    Computer networks, 54(11):1848–1863, 2010.
    [20] Ahmed H Zahran and Ben Liang. Performance evaluation framework for vertical
    handoff algorithms in heterogeneous networks. In IEEE International Conference on
    Communications, 2005. ICC 2005. 2005, volume 1, pages 173–178. IEEE, 2005.
    [21] Ahmed H Zahran, Ben Liang, and Aladdin Saleh. Signal threshold adaptation for vertical
    handoff in heterogeneous wireless networks. Mobile Networks and Applications,
    11(4):625–640, 2006.

    QR CODE
    :::