跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳宗羲
Tsung-Hsi Wu
論文名稱: A Stochastic Dynamics Model for Earthquake Rupture
指導教授: 陳建志
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 92
中文關鍵詞: 地震隨機破裂動力學
外文關鍵詞: stochastic, earthquake, rupture, dynamics
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在自然科學領域,隨機模型(stochastic model)被廣泛應用於描述系統的定量與定性關係。由於地震破裂的複雜性與尺度,決定性的力學方法存在著許多限制。有別於決定性的模型,本研究提出一個本質上包含隨機因子的統計力學形式之地震破裂過程之模型,探討地震滑移背後可能的物理機制。
    Thingbaijam 及 Mai (2016) 將世界各地的地震破裂模型之樣式公式化,展示地震各地之滑移分布遵守指數截略分布(Truncated Exponential distribution, TEX),惟迄今仍缺乏物理定律說明此現象。受到該研究的啟發,我們提出一個基於朗之萬方程式(Langevin equations)之隨機過程模型,其所產生之破裂滑移分布在統計性質上與世界各地的地震事件觀測一致,符合Thingbaijam 及 Mai (2016) 研究結果。
    本研究主張在一個地震中,穩態破裂過程可由朗之萬方程式描述,並從此觀點重新詮釋Thingbaijam and Mai (2016)的研究結果,如下所列:
    TEX擬合參數 u_c 與平均滑移量u_avg相依。
    於破裂模型邊緣裁切能增進滑移分布對TEX函數的擬合結果。
    地震破裂滑移的TEX分布。

    研究結果展示特定朗之萬方程式於有限穩態過程的解析解與地震滑移之指數截略分布(TEX)相同,TEX函數中的擬合參數 u_c 可與朗之萬方程式中的擴散係數與阻尼係數(diffusion and damping coefficient)之比值相關聯。結果暗示著朗之萬方程式可能是主導地震破裂過程的關鍵,而方程式背後存在多種可能的物理意涵,提供我們進一步發掘隨機破裂過程背後物理意義之線索。


    Due to the capability of simplifying chaotic-like dynamics, stochastic modeling approaches have been widely applied in many domains of natural science. In this study, we propose a stochastic dynamics model for earthquake rupture that intrinsically includes fluctuations in the environment as well as uncertainties in the heterogeneity of the faulting plane in the random variable, and reveal that the responsible Langevin equation (LE) may have a fundamental role in interpreting the physics of earthquake rupture process. Specifically, both analytical and numerical solutions of the governing equation meet the empirically observed Truncated Exponential (TEX) feature of rupture slip distribution. We claim that the stationary part of the earthquake rupture process is governed by the Langevin equation, and accordingly explain the phenomena/facts listed below: (1) The scaling relationship between the parameter uc of TEX and the average co-seismic slips uavg. (2) The overall improvement of the goodness-of-fit of TEX resulting from trimming the original rupture model at edges. (3) The commonly observed truncated exponential distribution for earthquake rupture slips.
    The result of this study further implies that the fitting parameter uc in TEX is directly related to the ratio of the diffusion and friction coefficient of the Langevin equation, and gives us clues for investigating the physically-based laws underpinning the stochastic rupture process.

    Table of Contents 中文摘要 i Abstract ii List of frequently used symbols vi Chapter 1 Introduction 1 1-1 Purpose and motivation 1 1-2 Literature review 3 1-2-1 The statistical behavior of earthquake rupture models 3 1-2-2 The study of stochastic process 6 Chapter 2 Stochastic process 8 Frequently used symbols / Brief introduction to terminology in this chapter 8 2-1 Introduction to random process 9 2-1-1 random variables 9 2-1-2 The expectation of random variables 10 2-1-3 Stochastic process 10 2-1-4 Stationary process 11 2-1-5 Ergodicity 11 2-1-6 Wiener Process 12 2-1-7 Markov process 14 2-1-8 Stochastic Differential Equation 14 2-2 Brownian motion 15 2-2-1 The Brownian motion in the Langevin description 15 2-2-2 The general Langevin equation 19 2-2-3 The stationarity of Brownian motion 19 2-3 Equivalence of Langevin equation and Fokker-Planck equation 20 2-3-1 The master equation 21 2-3-2 The Kramers-Moyal expansion of the master equation 22 2-3-3 The 1st and 2nd order of the jump moment 24 2-3-4 The Fokker-Planck equation 31 Chapter 3 The data processing for rupture model 32 3-1 The truncated exponential distribution for earthquake rupture 32 3-2 TEX fitting with rupture models 35 3-2-1 Data selection 35 3-2-2 Method of data fitting 35 Chapter 4 Stochastic Dynamics for Frictions 37 4-1 The governing equations 37 4-1-1 The Langevin equation 37 4-1-2 The Fokker-Planck equation 39 4-2 Solutions of stochastic dynamic frictions 40 4-2-1 The probability distribution 40 4-2-2 Numerical simulation method 42 4-2-3 The time- and ensemble-averaged PDF 46 4-2-4 Numerical simulation constrained by real observations 49 Chapter 5 Discussion and conclusion 53 5-1-1 The data trimming effect in the study of Thingbaijam and Mai 53 5-1-2 Earthquake size, duration, and maximum source slip 54 5-1-3 The meaning of fitting parameter uc in a TEX distribution 55 5-2 Conclusion and future work 57 Reference 58 Appendix 66 Other results of stochastic earthquake rupture 66 Table 1: List of total 177 reference rupture models from SRCMOD database 74

    Argyris, J. H., Faust, G., Haase, M., & Friedrich, R. (2015). An Exploration of Dynamical Systems and Chaos: Completely Revised and Enlarged Second Edition. Springer.
    Arnold, L. (1974). Stochastic differential equations. New York.
    Atkinson, B. (1987). Fracture mechanics of rocks.
    Ben‐Zion Yehuda, & Rice James R. (2012). Earthquake failure sequences along a cellular fault zone in a three‐dimensional elastic solid containing asperity and nonasperity regions. Journal of Geophysical Research: Solid Earth, 98(B8), 14109–14131. https://doi.org/10.1029/93JB01096
    Cecconi, F., Cencini, M., Falcioni, M., & Vulpiani, A. (2005). Brownian motion and diffusion: From stochastic processes to chaos and beyond. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(2), 026102. https://doi.org/10.1063/1.1832773
    Chakrabarti, B. K., & Benguigui, L. G. (1997). Statistical Physics of Fracture and Breakdown in Disordered Systems. Oxford, New York: Oxford University Press.
    Charles, W., & van der Weide, J. (2011). Stochastic differential equations. Introduction to Stochastic Models for pollutant, Dispersion, Epidemic and Finance. Lappennranta University Finland.
    Chen, C., Wang, J.-H., & Huang, W.-J. (2012). Material decoupling as a mechanism of aftershock generation. Tectonophysics, 546, 56–59.
    Coffey, W. T., & Kalmykov, Y. P. (2012). The Langevin Equation: With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering. World Scientific.
    Coffey, W. T., Kalmykov, Y. P., & Waldron, J. T. (1996). The Langevin Equation: With Applications In Physics, Chemistry And Electrical Engineering (Vol. 10). World Scientific.
    Cyganowski, S., Kloeden, P., & Ombach, J. (2001). From elementary probability to stochastic differential equations with MAPLE®. Springer Science & Business Media.
    Eckmann, J.-P. (1981). Roads to turbulence in dissipative dynamical systems. Reviews of Modern Physics, 53(4), 643–654. https://doi.org/10.1103/RevModPhys.53.643
    Einstein, A. (2003). Investigation on the theory of the Brownian movement. (R. Fürth, Ed., A. D. Cowper, Trans.). Mineola: Dover.
    Feller, W. (2008). An introduction to probability theory and its applications (Vol. 2). John Wiley & Sons.
    Fokker, A. D. (1914). Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Annalen Der Physik, 348(5), 810–820.
    Garcia-Palacios, J. L. (2007). Introduction to the theory of stochastic processes and Brownian motion problems. ArXiv:Cond-Mat/0701242. Retrieved from http://arxiv.org/abs/cond-mat/0701242
    Gardiner, C. (1985). Handbook of stochastic processes. Springer-Verlag, Berlin.
    Grinstead, C. M., & Snell, J. L. (2012). Introduction to probability. American Mathematical Soc.
    Hänggi, P., & Marchesoni, F. (2005). Introduction: 100years of Brownian motion. Chaos: An Interdisciplinary Journal of Nonlinear Science, 15(2), 026101. https://doi.org/10.1063/1.1895505
    Heaton, T. H. (1990). Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors, 64(1), 1–20.
    Ide, S. (2008). A Brownian walk model for slow earthquakes. Geophysical Research Letters, 35(17), L17301. https://doi.org/10.1029/2008GL034821
    Jazwinski, A. H. (2007). Stochastic processes and filtering theory. Courier Corporation.
    Kagan, Y. Y., Jackson, D. D., & Geller, R. J. (2012). Characteristic Earthquake Model, 1884–2011, R.I.P. Seismological Research Letters, 83(6), 951–953. https://doi.org/10.1785/0220120107
    Kampen, N. G. van. (1981). Stochastic processes in physics and chemistry. North-Holland.
    Kawarada, A., & Hayakawa, H. (2004). Non-Gaussian Velocity Distribution Function in a Vibrating Granular Bed. Journal of the Physical Society of Japan, 73(8), 2037–2040. https://doi.org/10.1143/JPSJ.73.2037
    Kolmogoroff, A. (1931). Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Mathematische Annalen, 104(1), 415–458.
    Lemons, D. S., & Gythiel, A. (1997). Paul Langevin’s 1908 paper “On the Theory of Brownian Motion” [“Sur la théorie du mouvement brownien,” C. R. Acad. Sci. (Paris) 146, 530–533 (1908)]. American Journal of Physics, 65(11), 1079–1081. https://doi.org/10.1119/1.18725
    Lu, X. (2009). Combined experimental and numerical study of spontaneous dynamic rupture on frictional interfaces (phd). California Institute of Technology. Retrieved from http://resolver.caltech.edu/CaltechETD:etd-10242008-070701
    Lu, X., Rosakis, A. J., & Lapusta, N. (2010). Rupture modes in laboratory earthquakes: Effect of fault prestress and nucleation conditions. Journal of Geophysical Research: Solid Earth, 115(B12), B12302. https://doi.org/10.1029/2009JB006833
    Ma, K.-F., Mori, J., Lee, S.-J., & Yu, S. (2001). Spatial and temporal distribution of slip for the 1999 Chi-Chi, Taiwan, earthquake. Bulletin of the Seismological Society of America, 91(5), 1069–1087. https://doi.org/10.1785/0120000728
    Mai, P. M. (2011). Earthquake rupture inversions: the (ugly) past, the (not-quite-as-ugly) present, and the (hopefully bright) future. Presented at the 2nd QUEST Workshop, Hveragerdi,,Reykjavik,Iceland. Retrieved from http://www.quest-itn.org/events/2nd-quest-workshop/2nd-quest-workshop/programme
    Mai, P. M., & Beroza, G. C. (2000). Source scaling properties from finite-fault-rupture models. Bulletin of the Seismological Society of America, 90(3), 604–615. https://doi.org/10.1785/0119990126
    Marmarelis, V. Z. (2004). Appendix II: Gaussian White Noise. In Nonlinear Dynamic Modeling of Physiological Systems (pp. 499–501). John Wiley & Sons, Inc. https://doi.org/10.1002/9780471679370.app2
    Meyers, R. A. (Ed.). (2011). Extreme Environmental Events. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4419-7695-6
    Nelson, E. (1967). Dynamical theories of Brownian motion (Vol. 3). Princeton university press.
    Øksendal, B. (2003). Stochastic differential equations. In Stochastic differential equations (pp. 65–84). Springer.
    Papageorgiou, A. S. (2003). The Barrier Model and Strong Ground Motion. Pure and Applied Geophysics, 160(3), 603–634. https://doi.org/10.1007/PL00012552
    Planck, M. (1917). Über einen Satz der statistischen Dynamik und seine Erweiterung in der Quantentheorie. Reimer.
    Plato, J. von. (1991). Boltzmann’s ergodic hypothesis. Archive for History of Exact Sciences, 42(1), 71–89. https://doi.org/10.1007/BF00384333
    Radons, G., & Neugebauer, R. (2006). Nonlinear Dynamics of Production Systems. John Wiley & Sons.
    Renn, J. (2005). Einstein’s invention of Brownian motion. Annalen Der Physik, 14(S1), 23–37. https://doi.org/10.1002/andp.200410131
    Risken, H. (1989). The Fokker-Planck equation. Methods of solution and applications (2nd ed.). Retrieved from http://adsabs.harvard.edu/abs/1989fpem.book.....R
    Risken, Hannes. (2012). The Fokker-Planck Equation: Methods of Solution and Applications. Springer Science & Business Media.
    Rundle, J. B. (1989). A physical model for earthquakes: 3. Thermodynamical approach and its relation to nonclassical theories of nucleation. Journal of Geophysical Research: Solid Earth, 94(B3), 2839–2855.
    Rundle, J. B., Klein, W., & Gross, S. (1996). Dynamics of a traveling density wave model for earthquakes. Physical Review Letters, 76(22), 4285–4288. https://doi.org/10.1103/PhysRevLett.76.4285
    Rundle, J. B., Preston, E., McGinnis, S., & Klein, W. (1998). Why Earthquakes Stop: Growth and Arrest in Stochastic Fields. Physical Review Letters, 80, 5698–5701. https://doi.org/10.1103/PhysRevLett.80.5698
    Rundle, J. B., Turcotte, D. L., Shcherbakov, R., Klein, W., & Sammis, C. (2003). Statistical physics approach to understanding the multiscale dynamics of earthquake fault systems. Reviews of Geophysics, 41(4), 1019. https://doi.org/10.1029/2003RG000135
    Scholz, C. H. (1990). The mechanics of earthquakes and faulting.
    Siriki, H., Bhat, H. S., Lu, X., & Krishnan, S. (2015). A Laboratory Earthquake‐Based Stochastic Seismic Source Generation Algorithm for Strike‐Slip Faults and its Application to the Southern San Andreas Fault. Bulletin of the Seismological Society of America, 105(4), 2250–2273. https://doi.org/10.1785/0120140110
    Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., et al. (1999). Characterizing Crustal Earthquake Slip Models for the Prediction of Strong Ground Motion. Seismological Research Letters, 70(1), 59–80. https://doi.org/10.1785/gssrl.70.1.59
    Thingbaijam, K. K. S., & Mai, P. M. (2016). Evidence for Truncated Exponential Probability Distribution of Earthquake Slip. Bulletin of the Seismological Society of America, 106 (4)(4), 1802–1816. https://doi.org/10.1785/0120150291
    Thingbaijam, K. K. S., & Mai, P. M. (2017). Erratum to Evidence for Truncated Exponential Probability Distribution of Earthquake SlipErratum. Bulletin of the Seismological Society of America, 107(4), 1983–1983. https://doi.org/10.1785/0120170108
    Thomas, M. Y., Avouac, J., Champenois, J., Lee, J., & Kuo, L. (2014). Spatiotemporal evolution of seismic and aseismic slip on the Longitudinal Valley Fault, Taiwan. Journal of Geophysical Research: Solid Earth, 119(6), 5114–5139.
    Tinti, E., Cocco, M., Fukuyama, E., & Piatanesi, A. (2009). Dependence of slip weakening distance (D c) on final slip during dynamic rupture of earthquakes. Geophysical Journal International, 177(3), 1205–1220.
    Van Kampen, N. G. (1992). Stochastic processes in physics and chemistry (Vol. 1). Elsevier.
    Walpole, R. E., Myers, S. L., Ye, K., & Myers, R. H. (2007). Probability and statistics for engineers and scientists (8th ed.). Pearson.
    Zhuang, J., & Touati, S. (2015). Stochastic simulation of earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis.
    Zorzano, M. P., Mais, H., & Vazquez, L. (1999). Numerical solution of two dimensional Fokker—Planck equations. Applied Mathematics and Computation, 98(2), 109–117. https://doi.org/10.1016/S0096-3003(97)10161-8

    QR CODE
    :::