跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳建儒
Jian-Ru Chen
論文名稱: 以資料隱藏為基礎之視訊版權保護與強健性傳輸
Data Hiding-based Video Copyright Protection and Error Resilient Transmission
指導教授: 呂俊賢
Chun-Shien Lu
范國清
Kuo-Chin Fan
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 110
中文關鍵詞: 浮水印版權保護強健性傳輸資料隱藏
外文關鍵詞: copyright protection, watermarking, data hiding, error resiliece
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於資料數位化的發展以及網路的流行,資料可以用數位的方式儲存和傳輸,數位多媒體比以往類比式多媒體的優點是容易儲存、複製,而且複製品與原品一模一樣。透過網路,人們對於資訊的取得變得方便又迅速,傳遞也變得更容易。雖然人們可藉著網路下載數位資訊來使用,然而數位化的資訊極易被竄改與複製,這其中便牽涉到智慧財產權的侵權問題,因此數位資訊保護的相關問題便因應而生,因為網路的流行而成為相當熱門的研究課題。
    另外,視訊透過網路傳遞很方便,但是在傳輸的過程中經常發生封包遺失的情形。在wireless環境中,由於視訊的傳輸經常會遭遇雜訊干擾與通訊頻道擁塞等問題,導致傳輸的視訊收看品質會遽烈降低。
    在本論文我們提出因應視訊在網路傳輸面臨問題的解決方法。主要目的有二:一、對視訊做版權的保護。二、對視訊發展強健性傳輸技術。
    在視訊的版權技術方面,我們提出一個強健性的視訊浮水印技術,滿足浮水印透明性、即時性的浮水印偵測、bit-rate 保持不變、在壓縮域(VLC domain)的處理等等的要求。為滿足浮水印即時性的偵測的需求,在崁入時,我們的方法是直接在VLC 域上作處理,因此在作浮水印偵測時,也是直接在VLC域作即時性的偵測。另外為了處理 copy attack 與 collusion attack, 我們提出 video frame-dependent watermark (VFDW)方法,對於copy attack 與 collusion attack 具有良好的抵抗能力。
    在視訊強健性傳輸技術方面,我們提出一個以hash為基礎的強健性的視訊傳輸技術。我們提出hash定義,此hash用來描述被參考的區塊(block)。當視訊在作壓縮時,把被參考的區塊的hash崁入視訊中。一旦視訊的封包遺失,則使用者端可將原先藏在視訊中的hash取出,利用hash來幫助作視訊的修補。此外, 我們也提出2階段式的hash比對方法,與結合hash資訊的side-match方法。從實驗上來看,我們的方法在burst packet lose的環境中具有良好的抵抗能力。


    Due to the rapid development of network in the past decade, a large number of multimedia data have been stored and transmitted via network.
    Digital multimedia is much superior to analog data because it can easily copy without losing any quality.
    However, this superiority is also a drawback because digital multimedia could be easily tampered with, duplicated or distributed.
    As a consequence, the intellectual property protection problem has become an urgent issue in the digital world.
    In addition, it is very easy and convenient to transmit the digital video over network.
    However, video transmission usually suffers interference and bandwidth congestion seriously under wireless network environment.
    The reconstructed quality will degrade drastically.
    Therefore, robust video transmission becomes an important issue.
    In this thesis, we proposed two research topics including video copyright protection and robust video transmission.
    For video copyright protection, we proposed a robust video watermarking scheme.
    Some video watermarking issues, including compressed domain watermarking, real-time detection, bit-rate control, and resistance to watermark estimation attacks, will be satisfied.
    In the embedding process, our algorithm is designed to operate directly in the variable length codeword (VLC) domain.
    In addition, the watermark detection is also to operate directly in the variable length codeword (VLC) domain to satisfy the requirement of real-time detection.
    For bit-rate control, we describe how watermark signals can be embedded into compressed video while keeping the desired bit-rate nearly unchanged.
    In particular, in order to deal with both collusion and copy attacks that are fatal to video watermarking, the video frame-dependent watermark (VFDW) is presented.
    From the experiment result, our video watermarking scheme is robust to collusion and copy attack, simultaneously.
    For video transmission, error concealment is adopted at decoder when video data is corrupted or lost.
    In general, error concealment exploits the smoothness of the corrupted block boundary for data recovery.
    It is a kind of side-matching.
    In other words, side-matching is dominanted by the boundary smoothness instead of the block content.
    We propose a data hiding-based hash matching scheme to estimate the lose motion vector for concealment at decoder.
    The proposed video block hash is used to describe the reference block.
    In the encoder side, the hash of each reference block is hidden into video itself.
    Therefore, decoder can extract the hash for error concealment when packets are lost.
    Furthermore, we propose the two-stage hash matching procedure for searching the content-based candidate blocks.
    In addition, the extracted hash can be adopted in side-matching process for finding the final candidate block.
    From the experimental results, the video quality is improved under the burst packet lose environment.

    Contents 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statements . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 The Organization of the Dissertation . . . . . . . . . . . . . . . . . 5 2 Data Hiding and Media hash 6 2.1 Data Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Media Hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Real-Time Frame-Dependent VideoWatermarking in VLC Domain . . . . . . . 12 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 MPEG-2 Bitstream Watermarking . . . . . . . . . . . . . . . . . . . . 16 3.3.1 Video Watermarking in the VLC Domain . . . . . . . . . . . . . . . . 16 3.3.2 Macroblock-based video watermarking . . . . . . . . . . . . . . . . 18 3.3.2.1 Video Watermark Embedding . . . . . . . . . . . . . . . . . . . . 20 3.3.2.2 Video Watermark Extraction . . . . . . . . . . . . . . . . . . . . 23 3.3.3 Bit-Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4 Video Frame-Dependent Watermark . . . . . . . . . . . . . . . . . . . 26 3.4.1 Watermark Estimation Attack . . . . . . . . . . . . . . . . . . . . 26 3.4.2 Frame Hash and Video Frame-dependent Watermark . . . . . . . . . . . 27 3.4.3 Properties of the VFDW . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.4 Resistance to WEA . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5.1 Bit-Rate Control . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.5.2 Fidelity of Stego Video Sequences . . . . . . . . . . . . . . . . . 34 3.5.3 Resistance to Incidental Video Attacks . . . . . . . . . . . . . . . 34 3.5.4 Resistance to Malicious Video Attacks . . . . . . . . . . . . . . . 37 3.5.4.1 Resistance to I-Frame Dropping . . . . . . . . . . . . . . . . . . 38 3.5.4.2 Resistance to Watermark Estimation Attacks . . . . . . . . . . . . 40 VFDW Resistance to the Collusion Attack. . . . . . . . . . . . . . . . . . 40 VFDW Resistance to the Copy Attack . . . . . . . . . . . . . . . . . . . . 42 3.5.5 Real-Time Detection . . . . . . . . . . . . . . . . . . . . . . . . 43 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Media Hash-based Error-Resilient Video Transmission . . . . . . . . . . 49 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.1.1.1 Encoder-Level . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.1.1.2 Transport-Level . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.1.3 Decoder-Level . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.1.4 Data Hiding-based . . . . . . . . . . . . . . . . . . . . . . . . 52 4.1.1.5 Side Information-based . . . . . . . . . . . . . . . . . . . . . . 53 4.1.2 Our Observations . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 Proposed Video Block Hashing . . . . . . . . . . . . . . . . . . . . . 54 4.3 Proposed Media Hashed Error-Resilient Video Transmission . . . . . . . 57 4.3.1 Block Hash Hiding . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.3.1.1 Analysis of Distortions Caused by Hash Embedding . . . . . . . . . 59 4.3.2 Media Hash Extraction and Matching at Decoder . . . . . . . . . . . 59 4.3.3 Two-Stage Hash Matching at Decoder . . . . . . . . . . . . . . . . . 61 4.4 Analysis of Error Recovery for Media Hash-based Error Resilience and Forward Error Correction . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.4.1 Error Resilience of Our Method . . . . . . . . . . . . . . . . . . . 63 4.4.2 Error Resilience of FEC . . . . . . . . . . . . . . . . . . . . . . 64 4.4.3 Our Method vs. FEC . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Conclusion and FutureWorks . . . . . . . . . . . . . . . . . . . . . . . 80 5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

    [1] ISO/IEC 11172-2:1993, “Information technology – Coding of moving pictures and
    associated audio for digital storage media at up to about 1.5Mbit/s,” Part 2: Video.
    [2] ISO/IEC 13818-2:2000, “Information technology – Generic coding of moving pictures
    and associated audio information” :Video.
    [3] ISO/IEC 11172-2:1993, “ISO/IEC 14496-2:2004. Information technology – Coding
    of audio-visual objects,” Part 2: Visual.
    [4] ITU-T (formerly CCITT) Recommendation H.263 Version 2 (H.263+), “Video
    Coding for Low Bitrate Communication,” 1998.
    [5] “Draft ITU-T recommendation and final draft international standard of joint video
    specification (ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC,” in Joint Video Team
    (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVTG050, 2003.
    [6] http://iphome.hhi.de/suehring/tml/download/old jm/jm96.zip.
    [7] A. Aaron, S. Rane, and B. Girod, “Wyner-Ziv Video Coding with Hash-based Motion
    Compensation at the Receiver,” Proc. IEEE Int. Conf. on Image Processing,
    2004.
    [8] I. Agi and L. Gong, “An empirical study of secure MPEG video transmissions,”
    Proc. Internet Society Symp. Network and Distributed System Security, pp. 137-
    144, 1996.
    [9] A. M. Alattar, E. T. Lin, and M. U. Celik, “Digital Watermarking of Low Bit-Rate
    Advanced Simple Profile MPEG-4 Compressed Video,” IEEE Trans. on Circuits
    and Systems for Video Technology, Vol. 13, No. 8, pp. 787-800, 2003.
    [10] S. Arena, M. Caramma, and R. Lancini, “DigitalWatermarking Applied toMPEG-
    2 Coded Video Sequences Exploiting Space and Frequency Masking,” Proc. IEEE
    Int. Conf. on Image Processing, 2000.
    [11] E. Ayanoglu, R. Pancha, A. R. Reibman, and S. Talwar, “Forward Error Control
    forMPEG-2 Video Transport in aWireless ATMLAN,” ACM/BaltzerMobile Networks
    and Applications, Vol. 1, No. 3, pp. 245 258, 1996.
    [12] S. Baudry and P. Nguyen and H. Maita, “Channel coding in video watermarking:
    use of soft decoding to improve the watermark retrieval,” Proc. IEEE Int. Conf. on
    Image Processing, 2000.
    [13] M. Chen, Y. He, and R. L. Landgelijk, “A Fragile Watermark Error Detection
    Scheme for Wireless Video Communications,” IEEE Trans. on Multimedia, Vol.
    7, No. 2, pp. 201-211, 2005.
    [14] H. Cheng and X. Li, “Partial Encryption of Compressed Images and Videos,” IEEE
    Trans. on Signal Processing, vol. 48, pp. 2439-2451, Aug. 2000.
    [15] I. J. Cox, J. Kilian, F. T. Leighton, and T. Shamoon, “Secure Spread Spectrum Watermarking
    for Multimedia,” IEEE Trans. on Image Processing, Vol. 6, pp. 1673-
    1687, 1997.
    [16] I. J. Cox, M. L. Miller, and J. A. Bloom, “Digital Watermarking,” Morgan Kaufmann
    Publishers, 2002.
    [17] J. Dittmann, M. Stabenau, and R. Steinmetz, “Robust MPEG Video Watermarking
    Technologies,” Proc. ACM Multimedia, Bristol, UK, 1998.
    [18] J. Fridrich, “Visual Hash for Oblivious Watermarking,” Proc. SPIE: Security and
    Watermarking of Multimedia Contents II, 2000.
    [19] F. Hartung and B. Girod, “Watermarking of Uncompressed and Compressed
    Video,” Signal Processing, Vol. 66, No. 3, pp. 283-302, 1998.
    [20] F. Hartung and M. Kutter, “Multimedia Watermarking Techniques,” Proceedings
    of the IEEE, Vol. 87, pp. 1079-1107, 1999.
    [21] C. Y. Hsu and C. S. Lu, “A Geometric-Resilient Image Hashing System and Its
    Application Scalability,” Proc. ACM Multimedia and Security Workshop, pp. 81-
    92, Magdeburg, Germany, 2004.
    [22] IEEE Int. Conf. on Multimedia and Expo: special session on Media Identification,
    June 2004.
    [23] T. Kalker, G. Depovere, J. Haitsma, and M. Maes, “A VideoWatermarking System
    for Broadcast Monitoring,” Proc. of the SPIE, Vol. 3657, pp. 103-112, 1999.
    [24] D. R. Kim and S. H. Park, “A Robust Video Watermarking Method,” Proc. IEEE
    Int. Conf. on Multimedia and Expo, 2000.
    [25] M. Kutter, S. Voloshynovskiy, and A. Herrigel, “The Watermark Copy Attack”,
    Proc. SPIE: Security and Watermarking of Multimedia Contents II, Vol. 3971,
    2000.
    [26] G. C. Langelaar, R. L. Lagendijk, and J. Biemond, “Real-Time Labeling ofMPEG-
    2 Compressed Video,” Journal of Visual Communication and Image Representation,
    Vol. 9, No. 4, pp. 256-270, 1998.
    [27] G. C. Langelaar and R. L. Lagendijk, “Optimal Differential Energy Watermarking
    of DCT encoded Images and Videos,” IEEE Trans. on Image Processing, Vol. 10,
    No. 1, pp. 148-158, 2001.
    [28] M. Lee, S. Nepal, and U. Srinivasan, “Role of Edge Detection in Video Semantics,”
    Proc. ACS Conferences in Research and Practice in Information Technology, Vol.
    22, pp. 59-68, 2003.
    [29] B. Li, E. Chang, and C. T. Wu, “DPF – A Perceptual Distance Function for Image
    Retrieval,” Proc. IEEE Int. Conf. on Image Processing, 2002.
    [30] C. Y. Lin and S. F. Chang, “A Robust Image AuthenticationMethod Distinguishing
    JPEG Compression from Malicious Manipulation,” IEEE Trans. on Circuits and
    Systems for Video Tech., Vol. 11, No. 2, pp. 153-168, 2001.
    [31] C. Y. Lin, D. Sow, and S. F. Chang, “Using Self-Authentication-and-Recovery Images
    for Error Concealment in Wireless Environments,” SPIE ITCom/OptiComm,
    Denver, CO, Vol. 4518, 2001.
    [32] Y. J. Liang, J. G. Apostolopoulos, and B. Girod, “Analysis of Packet Loss for Compressed
    Video: Does Burst-length Matter?” Proc. IEEE Int. Conf. on Acoustics,
    Speech, and Signal Processing , 2003.
    [33] J. Linnartz and J. C. Talstra, “MPEG PTY-Marks: Cheap Detection of embedded
    Copyright Data in DVD-Video,” ESORICS98., 1998.
    [34] C. S. Lu, “Wireless Multimedia Error Resilience via A Data Hiding Technique,”
    Proc. 5th IEEE Int.Workshop onMultimedia Signal Processing, US Virgin Islands,
    USA, 2002.
    [35] C. S. Lu and C. Y. Hsu, “Content-dependent Anti-Disclosure Image Watermark”,
    Proc. Int. Workshop on Digital Watermarking, LNCS 2939, pp. 61-76, Seoul, Korea,
    2003.
    [36] C. S. Lu and H. Y. Mark Liao, “Structural Digital Signature for Image Authentication:
    An Incidental Distortion Resistant Scheme,” IEEE Trans. on Multimedia,
    Vol. 5, No. 2, pp. 161-173, 2003.
    [37] C. S. Lu, J. R. Chen, and K. C. Fan, “Resistance of Content-dependent Video
    Watermarking to Watermark-Estimation Attacks,” Proc. IEEE Int. Conf. on Communications,
    pp. 1386-1390, France, 2004.
    [38] C. S. Lu, C. Y. Hsu, S. W. Sun, and P. C. Chang, “Robust Mesh-based Hashing for
    Copy Detection and Tracing of Images,” Proc. IEEE Int. Conf. on Multimedia and
    Expo, Taipei, Taiwan, 2004.
    [39] C. S. Lu, S. W. Sun, and P. C. Chang, “Robust Mesh-based Content-dependent
    Image Watermarking with Resistance to Both Geometric Attack and Watermark-
    Estimation Attack,” Proc. SPIE: Security, Steganography, and Watermarking of
    Multimedia Contents VII (EI120), San Jose, California, USA, 2005.
    [40] C. S. Lu and C. Y. Hsu, “Geometric Distortion-Resilient Image Hashing Scheme
    and Its Applications on Copy Detection and Authentication,” ACM Multimedia
    Systems Journal, special issue on Multimedia and Security, Vol. 11, No. 2, pp.
    159-173, December 2005.
    [41] IEEE Int. Workshop on Multimedia Signal Processing, special session on Media
    Recognition, 2002.
    [42] I. Moccagatta, A. Soudagar, J. Liang, and H. Chen, “Error-Resilient Coding in
    JPEG-2000 and MPEG-4,” IEEE Journal on Selected Area in Communications,
    Vol. 18, No. 6, pp. 899 914, 2000.
    [43] ftp://ftp.mpegtv.com/pub/mpeg/mssg/mpeg2v12.zip.
    [44] F. Petitcolas, R. J. Anderson, and M. G. Kuhn, “Information Hiding: A Survey,”
    Proc. of the IEEE, Vol. 87, pp. 1062-1078, 1999.
    [45] W. Pongpadpinit and A. Pearmain, “Recovery of Motion Vectors for Error Concealment
    Based on an Edge-Detection Approach,” IEE Proc.-Vis. Image Signal
    Process.,, Vol. 153, No. 1, pp. 63-69, Feb. 2006.
    [46] R. Puri, K. Ramchandran, K. W. Lee, and V. Bharghavan, “Forward Error Correction
    (FEC) Codes BasedMultiple Description Coding for Internet Video Streaming
    and Multicast,” Signal Processing: Image Communication, Vol. 16, pp. 745-762,
    May 2001.
    [47] L. Qiao and K. Nahrstedt, “Comparison ofMPEG encryption algorithms,” Comput.
    Graph., Vol. 22, no. 4, pp. 437-448, 1998.
    [48] K.C. Roh, K.D. Seoa, and J.K. Kim “Data Partitioning and Coding of DCT Coefficients
    Based on Requantization for Error-Resilient Transmission of Video,” Signal
    Processing: Image Communication, Vol. 17, pp. 573 585, 2002.
    [49] A. Sehgal, A. Jagmohan, and N. Ahuja, “Wyner-Ziv Coding of Video: An Error-
    Resilient Compression Framework,” IEEE Trans. on Multimedia, Vol. 6, No. 2,
    Apr. 2004.
    [50] T. Shanableh and M. Ghanbari, “Loss Concealment Using B-Pictures Motion Information,”
    IEEE Trans. on Multimedia, Vol. 5, No. 2, 2003.
    [51] C. Shi and B. Bhargava, “A fast MPEG video encryption algorithm,” Proc. ACM
    Conf. on Multimedia, pp. 81-88, 1998.
    [52] C. Shi, S.Y. Wang, and B. Bhargava, “MPEG video encryption in real-time using
    secret key cryptography,” Proc. International Conference on Parallel and Distributed
    Processing Techniques and Applications, 1999.
    [53] S. Shirani, F. Kossentini, and R. Ward, “A Concealment method for Video Communications
    in an Error-Prone Environment”, IEEE Journal on Selected Areas in
    Communications, Vol. 18, NO. 6, pp. 1122 1128, June 2000.
    [54] J. Song and K. J. R. Liu, “A Data Embedded Video Coding Scheme for Error-Prone
    Channels,” IEEE Trans. on Multimedia, Vol. 3, No. 4, 2001.
    [55] K. Su, D. Kundur, D. Hatzinakos, “Statistical Invisibility for Collusion-resistant
    Digital Video Watermarking,” to appear in IEEE Trans. on Multimedia.
    [56] M. D. Swanson, B. Zhu, and A. H. Tewfik, “Multiresolution Scene-based Video
    Watermarking Using Perceptual Models,” IEEE Journal on Selected Area in Communications,
    Vol. 16, No. 4, pp. 540-550, 1998.
    [57] L. L. Tang, “Methods for Encrypting and Decrypting MPEG Video Data Efficiently,”
    Proc. ACM Conf. on Multimedia, pp. 219-229, 1996.
    [58] A. Tosun and W. C. Feng, “On Error Preserving Encryption Algorithms for Wireless
    Video Transmission,” Proc. ACM Conf. on Multimedia, 2001.
    [59] S. Tsekeridou and I. Pitas, “MPEG-2 Error Concealment Based on Block-Matching
    Principles,” IEEE Trans. on Circuits and System for Video Technology, Vol. 10, No.
    4, pp. 646 658, June 2000.
    [60] Y. Wang and Q. F. Zhu, “Error Control and Concealment for Video Communication:
    A review,” Proc. of the IEEE, Vol. 86, pp. 974 997, 1998.
    [61] Y. Wang and S. Lin, “Error-Resilient Video Coding Using Multiple Description
    Motion Compensation,” IEEE Trans. on Circuits and Systems for Video Technology,
    Vol. 12, No. 6, Jun. 2002.
    [62] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment:
    From Error Visibility to Structural Similarity,” IEEE Trans. on Image
    Processing, Vol. 13, No. 4, pp. 600-612, 2004.
    [63] J. Wen, M. Severa, W. Zeng, M. H. Luttrell, and W. Jin, “A Format-compliant
    Configurable Encryption Framework for Access Control of Video,” IEEE Trans.
    on Circuits and Systems for Video Technology, Vol. 12, No. 6, pp. 545-557, 2002.
    [64] S. Voloshynovskiy, S. Pereira, A. Herrigel, N. Baumgartner, and T. Pun, “Generalized
    Watermarking Attack Based on Watermark Estimation and Perceptual Remodulation”,
    SPIE: Security and Watermarking of Multimedia Contents II, Vol.
    3971, 2000.
    [65] S. Voloshynovskiy, F. Deguillaume, S. Pereira, and T. Pun, “Optimal Adaptive
    Diversity Watermarking with Channel State Estimation,” Proc. SPIE: Security and
    Watermarking of Multimedia Contents III, Vol. 4314, USA, 2001.
    [66] X. Xu, S. Dexter, and A. M. Eskicioglu, “A Hybrid Scheme of Encryption and
    Watermarking,” IS&T/SPIE Symposium on Electronic Imaging 2004, Security,
    Steganography, and Watermarking of Multimedia Contents VI Conference, San
    Jose, CA, January 19-22, 2004.
    [67] P. Yin, M. Wu, and B. Liu, “A Robust Error Resilient Approach for MPEG Video
    Transmission over Internet,” Proc. SPIE: Visual Communication and Image Processing,
    2002.
    [68] W. Zeng and S. Lei, “Efficient Frequency Domain Selective Scrambling of Digital
    Video,” IEEE Trans. on Multimedia, Vol. 5, No. 1, pp. 118-129, 2003.
    [69] W. Zeng, X. Zhuang, and J. Lan, “Network Friendly Media Security: Rationales,
    Solutions, and Open Issues,” Proc. IEEE Int. Conf. on Image Processing, 2004.
    [70] B. B. Zhu, C. Yuan, Y. Wang and S. Li, “Scalable Protection for MPEG-4 Fine
    Granularity Scalability,” IEEE Trans. on Multimedia, Vol. 7, No. 2, pp. 222-233,
    2005.

    QR CODE
    :::