跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張逢京
Feng-Ching Chang
論文名稱: 用過核子燃料最終處置場之三方平行驗證和吸水膨脹效應及裂隙位置敏感度分析
指導教授: 張瑞宏
Jui-Hung Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 114
中文關鍵詞: 深層地質處置場代表體積單元膨潤土吸水膨脹裂隙
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 用過核子燃料最終處置問題,是目前我國能源發展中,重要且必須加緊處理的課題。國際間對於用過核子燃料最終處置辦法已有共識,均認為最安全可行的辦法為深層地質處置。
    建設深層地質處置場是ㄧ項龐大複雜的工程,各環節都需警慎評估,以免發生安全上的疑慮。本研究主要針對處置場的溫度場、飽和度、應力問題進行深入探討,所有分析都是透過有限元素軟體Abaqus完成。
    本研究參考瑞典核廢料管理公司(SKB)及瑞典核電監察局(SKI)的技術和審查報告進行平行驗證。在分析中以代表體積單元,進行單ㄧ處置孔的分析,完成溫度場及飽和度的平行驗證,得到與文獻相符的結果。由於膨潤土的吸水膨脹性質,使處置場內部產生額外的應力影響,可能造成處置孔壁、回填隧道破壞;為了瞭解吸水膨脹材料參數使用方法,本研究參考SKB文獻提供的吸水膨脹材料試驗,進行平行驗證,得到與文獻相符的結果;後續進行了多組案例,瞭解處置場中吸水膨脹效應之影響,並確認材料間彼此是否交互影響。深層地質處置場中,母岩為重要且難以變更的材料,在選擇處置場的位置時,諸多不利因素難以避免,以裂隙問題最為常見;本研究設計處置場中存在裂隙之模型,進行裂隙效應評估,瞭解裂隙對處置場再飽和時間影響。


    The problem of the final disposal of used nuclear fuel is an important issue in Taiwan’s energy development and must be addressed. There is a consensus internationally on the final disposal of used nuclear fuels, and the safest and most feasible method is the deep geological disposal.
    The construction of deep geological disposal sites is a huge and complex project, and safety is the most important consideration. This study focuses on the temperature field, saturation, and stress of the disposal site. Each analysis is done by the finite element software Abaqus. This study review the work by the Swedish Nuclear Fuel and Waste Management Corporation (SKB) and the Swedish Nuclear Power Inspectorate (SKI). In the analysis, the representative volume unit was used to analyze the single treatment hole. The temperature and the saturation analysis was completed, and the results consistent with the literature. Due to the bentonite swells, additional stress is generated inside the disposal site, which may cause damage to the disposal hole wall and backfill tunnel. In order to understand how to use the moisture swelling function, this study refers to the swelling pressure test provided by the SKB, and obtain the total stress and void ratio consistent with the literature. Subsequent cases were conducted to understand the effects of the moisture swelling pressure in the repository and to confirm whether the materials interact with each other. In the deep geological disposal site, the rock is an important and difficult to change material. When selecting the location of the repository site, many unfavorable factors are difficult to avoid, the crack problem is the most common. In this study, the model with cracks in repository was designed to evaluate the fracture effect and to understand the effect of the resaturation time.
    Keyward: deep geological disposal site, Representative volume unit, bentonite, moisture swelling, fracture

    摘要 i ABSTRACT ii 致謝 iv 目錄 v 圖目錄 ix 表目錄 xi 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究主題與方法 2 1.4 論文內容 3 第二章 文獻回顧 4 2.1 我國用過核子燃料之現況 4 2.2 各國最終處置場之相關研究 6 2.2.1 瑞典 6 2.3 多重障壁系統之主要元件 9 2.4 THM相關研究 12 2.4.1 熱傳導分析 12 2.4.2 水-力學分析 14 2.5 國外文獻研析 16 第三章 理論與數值模擬方法 20 3.1 前言 20 3.2 熱傳導 20 3.3 熱對流 23 3.4 力學理論 24 3.5 孔隙水流理論 26 3.6 代表體積單元 27 3.7 完全耦合熱-水-力學分析流程 30 第四章 溫度場及飽和度之平行驗證 33 4.1 前言 33 4.2 溫度場之三方平行驗證 33 4.2.1 模型幾何配置 33 4.2.2 材料參數介紹 35 4.2.3 初始條件與邊界條件 35 4.2.4 溫度場分析結果驗證 36 4.3 飽和度之平行驗證 40 4.3.1 材料參數介紹 40 4.3.2 初始條件與邊界條件 44 4.3.3 水-力學分析結果驗證 46 4.3.4 極低母岩滲透係數到達飽和時間探討 47 4.4 邊界孔隙水壓影響分析 49 4.4.1 案例介紹 49 4.4.2 到達飽和時間分析結果 50 第五章 吸水膨脹影響效應研析 51 5.1 前言 51 5.2 吸水膨脹計算方式 51 5.2.1 SKB之計算方式 51 5.2.2 SKI之計算方式 53 5.3 吸水膨脹計算驗證 53 5.3.1 材料參數及初始條件 53 5.3.2 案例介紹 55 5.3.3 分析結果 56 5.4 深層地質處置場之吸水膨脹效應 58 5.4.1 分析流程 59 5.4.2 模型幾何及材料參數 59 5.4.3 初始條件及邊界條件 61 5.4.4 案例介紹 63 5.4.5 有效壓力分析結果 64 5.4.6 孔隙水壓分析結果 67 5.4.7 總壓力增量分析結果 68 第六章 裂隙位置效應之敏感度分析 70 6.1 前言 70 6.2 模型幾何配置 70 6.3 材料參數介紹 71 6.4 初始條件及邊界條件 72 6.5 案例介紹 72 6.6 分析結果 73 第七章 結論與建議 74 7.1 結論 74 7.2 建議 76 附錄1 完全熱-水-力耦合分析流程批次檔 77 附錄2 自動生成takesaturation.for副程式 81 附錄3 完全耦合之飽和度副程式之樣板 84 附錄4 溫度分析結果列表 85 附錄5飽和度分析結果列表 88 附錄6讀取初始熱傳分析結果之程式碼 91 附錄7溫度收斂性判斷程式 93 參考文獻 95

    [1] 行政院原子能委員會:核能電廠用過核子燃料貯存容量表。取自https://www.aec.gov.tw/
    [2] 瑞典核廢料管理公司(SKB):Formask最終處置場。取自http://www.skb.com/
    [3] SKB,"Design, production and initial state of the canister.",TR-10-14,December 2010
    [4] SKB,"Basic engineering of buffer production system.",P-14-11,November 2014
    [5] SKB,"System design of backfill.Basic engineering of backfill production system.",P-14-23,December 2014
    [6] SKI,"Review of SKB’s Work on Coupled THM Processes Within SR-Can.",SKI 2008:08,March 2008
    [7] SKB,"Coupled thermo-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole.",TR-99-41,December 1999
    [8] SKB,"Water saturation phase of the buffer and backfill in the KBS-3V concept .",TR-06-14,August 2006
    [9] SSM,"SR-Site Independent Modelling of Engineered Barrier Evolution and Coupled THMC: Contribution to the Initial Review Phase.",SSM 2012:18
    [10] SKI,"SKI’s and SSI’s review of SKB’s safety report SR-Can.",SKI 2008:23
    [11] SKB,"Long-term safety for KBS-3 repositories at Forsmark and Laxemar – a first evaluation.",TR-06-09,October 2006
    [12] 陳朝旭,「用過核廢料深層地下處置設計之研究」,國立中央大學,碩士論文,2002。
    [13] Desai,C. S.,“Finite Element Methods for Flow in Porous Media” in Finite Elements in Fluids, vol. 1, Wiley, London, pp. 157–181, 1975.
    [14] Tariq,S. M.,“Evaluation of Flow Characteristics of Perforations Including Nonlinear Effects With the Finite Element Method.” SPE Production Engineering, pp. 104–112, May 1987.
    [15] 謝馨輝,「核廢料地下處置之熱傳導及初步熱應變分析」,國立中央大學,碩士論文,2003。
    [16] Dassault Systèmes,"Abaqus 6.9 Online Documentation.",2009
    [17] SKB,"Äspö Hard Rock Laboratory,DECOVALEX lll, Task 1 Modelling of FEBEX in-situ test,Coupled thermo-hydro-mechanical analys of the buffer and the rock.",IPR-08-12,January 2004
    [18] SKB,"Modelling of the physical behaviour of water saturated clay barriers. Laboratory tests, material models and finite element application.",TR-95-20,September 1995

    QR CODE
    :::