| 研究生: |
吳錦松 Chin-Song Wu |
|---|---|
| 論文名稱: |
應用於數位影片內容保護之空間域與時間域特徵抽取機制 Spatial And Temporal Feature Extraction For Digital Video Copy Detection |
| 指導教授: |
蘇柏齊
Po-Chyi Su |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 影片複製偵測 、基於內容之影片檢索 |
| 外文關鍵詞: | video copy detection, CBVR |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一個應用於數位影片複製偵測之空間域與時間域特徵抽取機制,可應用於鑑別使用者上傳的影片之合法性。本研究方法是以影像內容的特徵為檢索基礎,並且提出新的空間域(spatial)特徵值為索引的快速近似方法來抵抗影片失真的狀況與提高辨識性,最後再使用新的時間域(temporal)特徵值的快速相似匹配方法,來鑑別使用者上傳的影片之合法性。本系統架構是基於H.264/AVC壓縮域的影片來執行解碼,進而分析每一組GOP(Group of Picture)值,來進行切換鏡頭畫面(SCF)的偵測分析,再從這些SCF集合中獲取時間域的數位特徵值,緊接著繼續從這些SCF集合中篩選出一個或是數個具代表此部Video的key frame,再透過我們提出的一種新的空間域特徵值提取方法來得到空間域的數位特徵值,最後我們僅需將產出的空間域與時間域的數位特徵值,儲存進資料庫中,並不需要花費大量的儲存空間來儲存原版影片。日後若需要鑑別使用者上傳的影片之合法性時,僅需比較在影片資料庫的空間域與時間域的數位特徵值即可。
我們提出的植基於內容的影片複製偵測方法,是適用於線上大量影片的複製偵測,例如鑑別使用者上傳到YouTube伺服器的影片之合法性。經過實際測試,在資料庫為252小時的影片中,使用者上傳影片的一張key frame的執行匹配計算時間約0.016秒。我們使用了MUSCLE-VCD-2007[34]與YouTube上大量影片來當作影片資料庫,並且使用一些失真的相似影片(例如在影片中加入noise、亮度改變、對比度改變、frame loss、frame insert、frame change、移位、旋轉、time shift)與不同影片來執行複製鑑別,實驗數據顯示了本機制是一個強健與高辨識性的系統,在對龐大的資料庫進行比較時,有高平均的查全率(Recall)與準確率(Precision),並能夠迅速地鑑別上傳的影片之合法性。
In this research, the techniques of spatial and temporal feature extraction are proposed for digital video copy detection. An efficient content-based video copy detection scheme based on the spatial and temporal feature extraction and matching is presented. The key-frames are selected to generate the spatial features, which are used as the anchor points for the temporal feature matching. The design considers the video coding structure so the efficiency and the compact size of feature database are the main contributions of the proposed framework. The experimental results show that the extracted feature can facilitate fast content matching for identifying the possible copies. The method should thus be feasible in matching contents in very large video databases.
[1] P. Geetha , Vasumathi Narayanan, “A Survey of Content-Based Video Retrieval,” Journal of Computer Science 4 (6), 2008, pp: 474-486.
[2] Bing Han, Xinbo Gao, Hongbing Ji, “A shot boundary detection method for news video based on rough-fuzzy sets,” International Journal of Information Technology, Vol. 11, No. 7, 2005, pp: 101-111.
[3] Gao, X. and X. Tang, “Unsupervised video-shot segmentation and model-free anchorperson detection for news video story parsing,” IEEE Trans. On Circuits and Systems for Video Technology, 2002, pp: 765-776.
[4] Gao, X. and X. Tang, “Automatic Parsing of News Video Based on Cluster Analysis,” Proceedings of Asia Pacific Conference on Multimedia Technology and Applications, Kaohsiung, Taiwai, China, Dec. 2000, pp: 17-19.
[5] Han Bing, Gao Xin-bo, Ji Hong-bing, “An efficient algorithm of gradual transition for shot boundary segmentation.” 3rd International Symposium on Multispectral Image Processing and Pattern recognition (MIPPR'03), Beijing, 2003, pp:956-961.
[6] Seung-Hoon Han, Kuk-Jin Yoon, and In So Kweon, “A new technique for shot detection and key frames selection in histogram space,” Workshop on Image Processing and Image Understanding, 2000, pp 475-479.
[7] H. Zhang, A. Kankanhalli, and S. W. Smoliar, “Automatic partitioning of full-motion video,” ACM Multimedia Systems, vol. 1,no.1, 1993, pp. 10–28.
[8] Bilge, G. and A.M. Tekalp, “Content based video abstraction,” Proceedings of the International Conference on Image, 1998, pp:128-132.
[9] John, S., Boreczky and D. Lynn, “A hidden markov model framework for video segmentation using audio an image features,” Proceedings of the IEEE International conference on Acoustics, Speech and Signal Processing, 1998, pp:3741-3744.
[10] Shan Li, Moon-Chuen Lee, “An improved sliding window method for shot change detection,” Proceeding of the 7th IASTED International Conference Signal and Image Processing, 2005, pp: 464-468.
[11] O'Toole, Colin and Smeaton, Alan F. and Murphy, Noel and Marlow, Sean, “Evaluation of automatic shot boundary detection on a large video test suite,” In: 2nd U.K. Conference on Image Retrieval: The Challenge of Image Retrieval, 1999, pp: 1-12.
[12] Cernekova, Z., N. Nikolaidis and I. Pitas, “Temporal video segmentation by graph partitioning,” Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2006, pp:209-212.
[13] Hong Jiang Zhang, Jianhua Wu, Di Zhong, Stephen W. Smoliar,” An integrated system for content-based video retrieval and browsing,” Elsevier, Pattern Recognition, Volume 30, Issue 4, April 1997, Pages 643–658.
[14] Bilge Gunsel, A. Murat Tekalp, Peter J. L. van Beek ,“Content-based access to video objects: Temporal Segmentation, visual summarization, and feature extraction.,” Signal Processing 1998; 66(2):261-280.
[15] Wayne Wolf, “Key frame selection by motion analysis,” IEEE International Conference on Acoustics, Speech and Signal Processing, 1996, pp. 1228–1231,.
[16] K. Kashino, T. Kurozumi, and H. Murase, “A quick search method for audio and video signals based on histogram pruning,” IEEE Trans. On Multimedia, vol. 5, 2003, pp. 348–357.
[17] A. Ferman, M. Tekalp, and R. Mehrotra, “Robust color histogram descriptors for video segment retrieval and identification,” IEEE Trans. on Multimedia, vol. 11, 2002, pp. 497 – 508.
[18] M. Swain and D. Ballard, “Color indexing,” Int. J. Comput. Vis, vol. 7, 1991.
[19] W. Hsu, T. S. Chua, and H. K. Pung, “An integrated color-spatial approach to content-based image retrieval,” in Proc. ACM Multimedia, 1995.
[20] C. Cotsaces, N. Nikolaidis, and I. Pitas, “Video Shot detection and condensed representation - a review,” IEEE Signal Processing Magazine, vol. 23, 2006, pp. 28–37.
[21] Y. Zhuang, Y. Rui, T. S. Huang, and S. Mehrotra, “Adaptive key frame extracting using unsupervised clustering,” Proc. of IEEE Int Conf on Image Processing, 1998, pp. 866–870.
[22] T. Wang, Y. Wu, and L. Chen, “An approach to video key-frame extraction based on rough set,” Multimedia and Ubiquitous Engineering, 2007. MUE ’07. International Conference on, 2007, pp. 590–596.
[23] Y. P. Tan, D. D. Saur, S. R. Kulkarni, and P. J. Ramadge, “Rapid estimation of camera motion from compressed video with application to video annotation,” IEEE Transactions on Circuits and Systems for Video Technology, 2000, pp. 133–145.
[24] T. Liu, H.-J. Zhang, and F. Qi, “A novel video key-frame-extraction algorithm based on perceived motion energy mode,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, 2003, pp. 1006–1013.
[25] P.-H. Wu, T. Thaipanich, and C.-C. J. Kuo, “A suffix array approach to video copy detection in video sharing social networks,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, Taipei, Taiwan, Apr. 2009.
[26] C. D. Roover, C. D. Vleeschouwer, F. Lefebvre, and B. Macq, “Robust video hashing based on radial projections of key frames,” IEEE Transactions on Signal Processing, 2005.
[27] B. Coskun, B. Sankur, and N. Memon, “Spatio-temporal transform based video hashing,” IEEE Transactions on Multimedia, 2006, pp. 1190–1208.
[28] F. Zargari, M. Mehrabi, and M. Ghanbari, “Compressed domain texture based visual information retrieval method for I-frame coded pictures,” IEEE Transactions on Consumer Electronics, 2010, pp. 728–736.
[29] H. Ling, H. Cheng, Q. Ma, F. Zou, and W. Yan, “Efficient image copy detection using multiscale fingerprints,” IEEE MultiMedia, 2012, pp. 60–69.
[30] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. of Computer Vision, 2004, pp. 91–110.
[31] L.-W. Kang, C.-Y. Hsu, H.-W. Chen, and C.-S. Lu, “Secure sift-based sparse representation for image copy detection and recognition,” in IEEE International Conference on Multimedia Exposition, 2010, pp. 1248–1253.
[32] P.-C. Su, C.-C. Chen, and H.-M. Chang, “Towards effective content authentication for digital videos by employing feature extraction and quantization,” in IEEE Trans. on Circuits and Systems for Video Technology, to appear, vol. 19, May 2009, pp. 668–677.
[33] C. J. van Rijsbergen, Information Retrieval. London, UK: Butterworth- Heinemann, 1979.
[34] J. Law-To, A. Joly, and N. Boujemaa, “Muscle-VCD-2007: a live benchmark for video copy detection,” 2007, http://www-rocq.inria.fr/imedia/civr-bench/.
[35] ReefVid: A Resource of Free Coral Reef Video Clips for Educational Use [Online]. Available: http://www.reefvid.org.
[36] M. M. Esmaeili, M. Fatourechi, and R. K. Ward, “A robust and fast video copy detection system using content-based fingerprinting,” IEEE Transactions on Information Forensics and Security, 2011, pp. 213–226.
[37] Benchmark videos from Youtube [Online]. Available: http://www.video-comparer.com/product-benchmarkyoutube-list.php.