跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃詠基
Yong-chi Huang
論文名稱: 混凝土受外部硫酸鹽侵蝕之膨脹模擬
指導教授: 張瑞宏
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 110
中文關鍵詞: 硫酸鹽侵蝕混凝土結構有限元素法膨脹應變
外文關鍵詞: Sulfate attack, Concrete structure, Finite element method, Expansion strain
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對硫酸鹽入侵混凝土結構之後所產生的耦合劣化機制進行探討。除了硫酸鹽離子在混凝土結構中的濃度擴散機制之外,硫酸鹽離子亦會與水泥材料中的鋁酸鹽進行二級化學反應,並產生具有膨脹性質的產物鈣礬石;鈣礬石的生成將造成混凝土結構的膨脹開裂,進而提高硫酸鹽在混凝土結構中的擴散率,加速結構產生的膨脹速率。
    對於此耦合劣化機制的數值模擬,本研究利用有限元素軟體ABAQUS對於此擴散─反應機制進行分析,求解硫酸鹽與鋁酸鹽濃度在空間上與時間上的分佈趨勢,並採用膨脹計算理論(Tixier 2000)進行膨脹量的數值計算。
    進行數值模擬與參數分析後,可得到以下結論:(1)此耦合擴散─反應機制的濃度分佈趨勢主要是由硫酸鹽擴散率控制而非反應速率常數;(2)混凝土試體的斷面大小將影響此耦合劣化機制所耗費的時間;(3)試體的最大膨脹量由鋁酸鹽初始濃度控制,但會因混凝土的毛細孔隙率及抗拉強度等材料特性而有所折減。


    This main topic in this study is to discuss the coupled deterioration processes of concrete structures subjected to external sulfate attack. In addition to the diffusion process of sulfates in concrete microstructure, the second order reaction between sulfates and calcium aluminates in cement is also considered. The product of this second order reaction is ettringite, which has the expansive nature and will cause the expansion of concrete, thus increases the diffusivity of sulfates in concrete and the rate of expansion of the structure.
    To simulate the coupled deterioration processes, the diffusion-reaction approach considered in this study is solved to find out the spatial and temporal distribution trend of sulfates and aluminates in concrete using the finite element software ABAQUS, the numerical computation of expansion is then performed adopting the theoretical model proposed in the reference (Tixier 2000).
    After the numerical simulation and the parametric study, the following conclusions are obtained, (1) The concentration distribution solved in this coupled diffusion-reaction approach is mainly controlled by the diffusivity of sulfates rather than the rate constant of reaction. (2) The size of the concrete cross-section will significantly affect the total time cost in the coupled deterioration processes. (3) The maximum amount of expansion is controlled by the initial concentration of calcium aluminates, but reduced by the material properties of concrete such as capillary porosity and tensile strength etc.

    摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究主題與方法 3 1.4 論文內容 4 第二章 文獻回顧 6 2.1 前言 6 2.2 放射性廢棄物的分類與來源 6 2.3 放射性廢棄物的處置 7 2.4 混凝土處置場之劣化機制 10 2.5 硫酸鹽的影響 12 第三章 硫酸鹽與鋁酸鹽耦合擴散─反應機制理論 15 3.1 前言 15 3.2 外部硫酸鹽侵蝕理論 15 3.3 數值模型 18 第四章 混凝土膨脹機制理論 22 4.1 前言 22 4.2 體積膨脹機制 23 4.3 混凝土膨脹模型 26 4.4 開裂效應 30 第五章 耦合擴散─反應機制與力學破壞數值模型 32 5.1 前言 32 5.2 ABAQUS數值模型之建立基礎 33 5.3 模型.INP檔案 34 5.4 使用者副程式 38 5.5 力學計算模型 39 5.6 分析流程 40 5.7 模型參數定義 43 第六章 數值案例分析 46 6.1 數值模型之幾何條件與材料特性 46 6.2 一維耦合擴散─反應機制 47 6.3 二維擴散─反應機制與膨脹量 51 6.4 鋼筋混凝土案例 57 6.5 ABAQUS力學模型 61 6.6 材料參數分析 64 第七章 結論與建議 73 7.1 結論 73 7.2 建議 74 附錄A 批次檔 76 附錄B INP檔案與使用者副程式 79 B-1 熱傳導分析INP 79 B-2 使用者副程式 81 附錄C 自撰程式之FORTRAN程式碼 84 C-1 材料參數 84 C-2 力學計算 88 參考文獻 96

    邱太銘,2002,「放射性廢棄物管理」,中興工程科技研究發展基金會,臺北市。
    黃兆龍,2008,「放射性廢棄物設施混凝土結構長期安全規範之研究」,行政院原子能委員會放射性物料管理局委託研究計畫研究報告。
    劉東山、蔡昭明,1993,「放射性廢料管理」,曉園出版社,臺北市。
    Brown, P. W. (1981). "An evaluation of the sulfate resistance of cements in a controlled environment." Cem. Concr. Res., 11(5), 719-727.
    Chawla, K. (1974). "On the applicability of the" Rule-of-Mixtures" to the strength properties of metal-matrix composites." Revista Brasileira de Física, 4(3), 411-418.
    Chen, D. (2006). "Computational framework for durability assessment of reinforced concrete structures under coupled deterioration processes." Doctor of Philosophy, Vanderbilt University, Nashville, Tennessee.
    Crank, J. (1979). The mathematics of diffusion, Oxford university press.
    Gérard, B., and Marchand, J. (2000). "Influence of cracking on the diffusion properties of cement-based materials: Part I: Influence of continuous cracks on the steady-state regime." Cem. Concr. Res., 30(1), 37-43.
    Hoglund, L. O. (1992). "Some notes on ettringite formation in cementitious materials - influence of hydration and thermodynamic constraints for durability." Cem. Concr. Res., 22(2-3), 217-228.
    Karihaloo, B. L. (1995). Fracture mechanics and structural concrete, Longman Scientific & Technical Harlow, Essex, England.
    Lide, D. R. (2009). CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data, Boca Raton, Fla. : CRC Press.
    Lienhard, J. H. (1981). A heat transfer textbook, Englewood Cliffs, N.J : Prentice-Hall.
    Nemat-Nasser, S., and Hori, M. (1993). "Micromechanics: overall properties of heterogeneous materials." Elsevie, Amsterdam.
    Tixier, R. (2000). "Microstructural development and sulfate attack modeling in blended cement-based materials." Doctor of Philosophy, Arizona State University.
    Tixier, R., and Mobasher, B. (2003a). "Modeling of damage in cement-based materials subjected to external sulfate attack. I: Formulation." J. Mater. Civ. Eng., 15(4), 305-313.
    Tixier, R., and Mobasher, B. (2003b). "Modeling of damage in cement-based materials subjected to external sulfate attack. II: Comparison with experiments." J. Mater. Civ. Eng., 15(4), 314-322.

    QR CODE
    :::