跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王灯利
Deng-Li Wang
論文名稱: 表面電漿對於半導體發光元件光萃取效率的影響之探討
Light Extraction Efficiency of Semiconductor Light Emitters based on Surface Plasmon
指導教授: 陳啟昌
Chii-Chang Chen
李建階
Chien-Chien Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 94
語文別: 中文
論文頁數: 58
中文關鍵詞: 發光元件表面電漿氮化銦鎵
外文關鍵詞: InGaN, light emitter, surface plasmon
相關次數: 點閱:23下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們簡述表面電漿的發展,並利用電磁波與金屬表面自由電子交互作用之電磁理論,對表面電漿共振現象作闡述。而在實驗方面,我們在發光元件表面設計與製作次波長金屬週期結構,由實驗量測紀錄發光元件在不同結構下的發光光譜,經過光譜數據之整理與比較,我們可確信表面電漿共振現象的存在,但是在發光元件的光萃取效率方面並非只有提升,效率下降的情形也同樣存在,由此可知,結構參數的設計對於表面電漿在發光元件中扮演的角色有著決定性的影響,若能掌握相關設計,將能有效提升發光元件之光萃取效率。


    In this thesis we capsule the development and the basic theory of surface palsmon. In the experiment, we design and fabricate sub-wavelength periodic structures onto the InGaN light emitters and record the spectra of InGaN with different structures. In our result, we are sure of the exist of surface plasmon, and we also see that both the increase and the decrease of the light extraction can be found in the experiment. From the result, we can know that the effect of surface plasmon on light emitters depends on the parameters of the added structures, and if the structures can be well designed, we will have a chance to improve the light extraction of semiconductor light emitters.

    第一章 序論 1 1-1表面電漿 1 1-2研究動機 2 1-3研究方法 6 第二章 金屬表面電漿理論 7 2-1金屬塊材表面電漿模態 7 2-2金屬薄膜表面電漿模態 11 2-3金屬表面電漿之激發 13 2-4表面電漿與光子 18 第三章 表面電漿發光元件之設計、製作與量測 20 3-1元件設計 20 3-2元件製作 21 3-3量測系統 25 第四章 結果與分析 27 4-1氮化銦鎵發光元件之檢測 27 4-2氮化銦鎵本身光譜數據歸一化處理 29 4-3不同厚度的週期結構光譜數據之處理 34 4-4入射光與出射光對各結構之穿透率的比較 41 4-5中心波長發光強度理論值與實驗值之比較 44 4-6分析與討論 46 第五章 結論與展望 52 參考文獻 54

    [1] R. W. Wood, Philos. Mag. 4, 396, 1902.
    [2] U. Fano, J. Opt. Soc. Am. 31, 213, 1941.
    [3] A. Hessel, and A. A. Oliner, Appl. Opt., 4, 1275, 1965.
    [4] M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hansch, Phys. Rev. Lett. 68, 476, 1992.
    [5] T. J. Silva and S. Schultz, and D. Weller, Appl. Phys. Lett. 65, 68, 1994.
    [6] Y. K. Kim, P. M. Lundquist, J. A. Helfrich, J. M. Mikrut, G. K. Wong, P. R. Auvil, and J. B. Ketterson, Appl. Phys. Lett. 66, 3407, 1995.
    [7] M. Ashino, and M. Ohtsu, Appl. Phys. Lett. 72, 1299, 1998.
    [8] O. Sqalli, I. Utke, P. Hoffmann, and F. Marquis-Weible, J. Appl. Phys. 92, 1078, 2002.
    [9] D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh, Jpn. J. Appl. Phys. 39, 982, 2000.
    [10] D. P. Tsai, and W. C. Lin, Appl. Phys. Lett. 77, 1413, 2000.
    [11] J. Tominoga, J. Kim, H. Fuji, D. Buchel, T. Kikukawa, L. Men, H. Fuckuda, A. Sato, T. Nakano, A. Tachibana, Y. Yamakawa, M. Kumagai, T. Fuckaya, and N. Atoda, Jpn. J. Appl. Phys. 40, 1831, 2001.
    [12] W. C. Liu, C. Y. Wen, K. H. Chen, W. C. Lin, and D. P. Tsai, Appl. Phys. Lett. 78, 685, 2001.
    [13] W. C. Liu, and D. P. Tsai, Phys. Rec B 65, 155423, 2002.
    [14] C. Haynes, and R. P. Van Duyne, J. Phys. Chem. B 107, 7426, 2003.
    [15] D. L. Jeanmaire, and R. P. Van Duyne, J. Electroanal. Chem. 84, 1977.
    [16] A. Wokaun, Molec. Phys. 56, 1, 1985.
    [17] M. Moskovits, J. Chem. Phys. 69, 4159, 1978.
    [18] J. C. Tsang, J. R. Kirtley, and T. N. Theis, Sol. State Common. 35, 667, 1980.
    [19] R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, M. J. Natan, Science 267, 1629, 1995.
    [20] I. Pockrand, J. D. Swalen, R. Santo, A. Brillante, and M. R. Philpott, J. Chem. Phys. 69, 4001, 1978.
    [21] W. P. Chen, and J. M. Chen, J. Opt. Soc. Am. 71, 189, 1981.
    [22] H. de Bruijn, R. Kooyman, and J. Greve, Appl. Opt. 29, 1974, 1990.
    [23] H. Kano, and S. Kawata, Jpn. J. Appl. Phys. 34, 331, 1995.
    [24] Xiangang Luo and Teruya Ishihara, Opt. Express 12, No. 14, 2004.
    [25] Xiangang Luo and Teruya Ishihara, Apl. Phys. Lett. 84, No. 23, 2004.
    [26] Xiangang Luo and Teruya Ishihara, Jpn. J. Appl. Phys. 43, No. 6B, 2004.
    [27] O. Stenzel, A. Stendal, K. Voigtsberger, and C. Von Borczyskowski, Solar Energy Materials and Solar Cells 37, 337, 1995.
    [28] M. Westphalen, U. Kreibig, J. Rostalski, H. Luth, D. Meissner, Solar Energy Materials and Solar Cells 61, 97, 2000.
    [29] C. Nylander, B. Liedberg, and T. Lind, Sens. & Actuators 3, 79, 1982.
    [30] W. A. Challener, R. R. Ollman, and K. K. Kam, Sens. & Actuators 56, 254, 1999.
    [31] H. Kano, and S. Kawata, Jpn. J. Appl. Phys. I, 34, 331, 1995.
    [32] K. Matsubara, S. Kawata, and S. Minami, Appl. Opt. 27, 1160, 1998.
    [33] A. A. Lazarides, and G. C. Schatz, J. Phys. Chem. B 104, 460, 2000.
    [34] A. J. Haes, and R. P. Van Duyne, J. Am. Chem. Soc. 124, 10596, 2002.
    [35] A. D. McFarland, and R. P. Van Duyne, Nano Lett. 3, 1057, 2003.
    [36] A. Köck, E. Gornik, M. Hauser, and M. Beinstingl, Appl. Phys. Lett. 57, 2327, 1990.
    [37] N. E. Hecker, R. A. Hopfel, and N. Sawaki, Physica E, 2, 98, 1998.
    [38] N. E. Hecker, R. A. Hopfel, N. Sawaki, T. Maier, and G. Strasser, Appl. Phys. Lett. 75, 1577, 1999.
    [39] W. L. Barnes, J. Light. Tech., 17, 2170, 1999.
    [40] S. Gianordoli, R. Hainberger, A. Kock, N. Finger, E. Gornik, C. Hank, and L. Korte, Appl. Phys. Lett. 77, 2295, 2000.
    [41] J. Vuckovic, M. Loncar, and A. Scherer, IEEE J. Qunt. Elec. 36, 1131, 2000.
    [42] P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, Advanced Materials, 14, 1393, 2002.
    [43] I. Gontijo, M. Borodisky, E. Yablonvitch, S. Keller, U. K. Mishra, and S. P. DenBaars, Phys. Rev. B, 60, 11564 , 1999.
    [44] A. Neogi, C.-W. Lee, H. O. Everitt, T. Kuroda, A. Tackeuchi, and E. Yablonvitch, Phys. Rev. B, 66, 153305, 2002.
    [45] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nature Mater. 3, 601, 2004.
    [46] M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, Jpn. J. Appl. Phys. 41, L1431, 2002.
    [47] S. Nakamura, Science, 281, 956, 1998.
    [48] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, Appl. Phys. Lett. 72, 211, 1998.
    [49] T. Mukai, K. Takekawa, S. Nakamura, Jpn. J. Appl. Phys. 37, L839, 1998.
    [50] T. Mukai, and S. Nakamura, Jpn. J. Appl. Phys., 38, 5735, 1999.
    [51] P. Walterelt, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, Nature, 406, 865, 2000.
    [52] J. J. Wierer, M. R. Krames, J. E. Epler, N. F. Gardner, M. G. Craford, J. R. Wendt, J. A. Simmons, and M. M. Sigalas, Appl. Phys. Lett., 84, 3885, 2004.
    [53] H. Raether, Springer-Verlag New York, 1988.
    [54] A. Barbara, P. Quemerais, E. Bustarret, T. Lopez-Rios, and T. Fournier, Eur. Phys. J. D 23, 143, 2003.
    [55] P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and
    K. D. Moller, J. Opt. A: Pure Appl. Opt. 2, 48, 2002.
    [56] R. A. Rerrell, Phys. Rev. 111, 1214, 1958.
    [57] K. L. Kliewer, and R. Fuchs, Phys. Rev. 153, 498, 1967.
    [58] Edward D. Palik, Academic Press Handbook Series, New York: Academic Press, 1985.
    [58] N. E. Hecker and R. A. Hopfel, Appl. Phys. Lett., 75, 1577, 1999.

    QR CODE
    :::