| 研究生: |
藍釧桂 Chuan-Gui Lan |
|---|---|
| 論文名稱: |
垂直異質性對推估流通係數的影響 Influence of Vertical Heterogeneity on the Estimation of Transmissivity |
| 指導教授: |
陳家洵
Chia-Shyun Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 定水頭實驗 、部分貫穿 、水力傳導係數 、流通係數 、異質性 |
| 外文關鍵詞: | hydraulic conductivity, constant head test, partially penetrate, transmissivity, heterogeneity |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統上,針對含水層垂直異質性對地下水流之影響的研究多使用層狀模式方法進行模擬,其中假設含水層由數過均質等向的次水層。每一個次水層有其特定的水力傳導係數(K)、比儲蓄係數(Ss)與厚度(b),因此整個含水層的K值、Ss值與b值呈現離散性的深度變化。本研究中,將K值與深度以一個連續的指數函數表示,探討垂直異質性對含水層洩降分布之影響,且此指數方程亦能代表真實含水層垂直異質的一種可能性。發展部分貫穿垂直異質含水層之定水頭試驗模式,幫助我們瞭解抽水井之部分貫穿效應與含水層之垂直異質性對洩降及流量的影響。結果顯示在抽水井附近的洩降變化同時受到部分貫穿效應與垂直異質性的偶合影響。部分貫穿效應隨距離增加而減少,終至完全消失,此範圍外的洩降分布則只受垂直異質性影響。
In the past, the effect of vertical heterogeneity on groundwater flow was frequently evaluated using the layered-model approach, where the aquifer is assumed to be composed of a number of homogeneous and isotropic sublayers. Each sublayer has a distinctive hydraulic conductivity, specific storativity and thickness, so the hydraulic conductivity, specific storativity and thickness of the aquifer varies with depth in a discrete sense. Here, the effect of vertical heterogeneity on drawdown distribution is investigated using a continuous exponential function of K(z) which represents one possibility of vertical heterogeneity. The pumping well partially penetrates the aquifer and is pumped under a constant drawdown. Therefore, the model developed also serves the purpose of understanding the local vertical disturbance (the partial penetrating effect) versus the global (aquifer scale) vertical heterogeneity on drawdown and discharge. It is found that drawdown variation in the vicinity of the well is under the influence of the compound effect of the partial penetration and the vertical heterogeneity. At farther distance, however, the partial penetration effect disappears and drawdown is influenced by vertical heterogeneity.
Bear, J, (1972), Dynamics of fluids in porous media, American Elsevier Publishing Company, Inc., New York, 764 pp..
Butler, J. J., Jr., A. A. Lanier, J. M. Healey, S. M. Sellwood, W. McCall, and E. Garnett (2000), Direct-push hydraulic profiling in an unconsoli- dated alluvial aquifer, Kansas Geological Survey Open-File Report, 2000-62. (Available at http://www.kgs.ku.edu/Hydro/Publications/ OFR00_62/index.html)
Butler, J. J., Jr., and C. D. McElwee (1990), Variable-rate pumping tests for radially symmetric nonuniform aquifers, Water Resources Research, 26(2), 291-306.
Cassiani, G., Z. J., Kabala, and M. A. Medina Jr. (1999), Flowing partially penetrating well: solution to a mixed-type boundary value problem., Advances in Water Resources, 23(1), 59-68.
Chang, C. C., and C. S. Chen (2003), A flowing partially penetrating well in a finite-thickness aquifer: a mixed-type initial boundary value problem, Journal of Hydrology, 271, 101-118.
Cooper, H. H., Jr, and C. E. Jacob (1946), A generalized graphical method for evaluating formation constants and summarizing well field history, Transactions, American Geophysical Union, 27, 526-534.
Dagan, G. (1978), A note on packer, slug, and recovery tests in unconfined aquifers, Water Resources Research, 14, 929-934.
Evans, J. P., C. B. Forster, and J. V. Goddard (1997), Permeability of fault- related rocks, and implications for hydraulic structure of fault zones, Journal of Structural Geology, 19(11), 1393-1404.
Halford, K. J., W. D. Weight, and R. P. Schreiber (2006), Interpretation of Transmissivity Estimates from Single-Well Pumping Aquifer Tests, Ground Water, 44(3), 467-471.
Hantush, M. S. (1961), Aquifer tests on partially penetrating wells, J. Hydraul. Div., Proc. Amer. Soc. Civil Engrs., 87(5), 171-195.
Hantush, M. S. (1964), Hydraulics of wells, in Advances in hydroscience, 1, edited by V. T. Chow, Academic Press, New York, 281-432.
Hantush, M. S. (1966), Analysis of data from pumping tests in anisotropic aquifers, Journal of Geophysical Research, 71(2), 421-426.
Hemker, C. J. (1999a), Transient well flow in vertically heterogeneous aquifers, Journal of Hydrology, 225, 1-18.
Hemker, C. J. (1999b), Transient well flow in layered aquifer systems: the uniform well-face drawdown solution, Journal of Hydrology, 225, 19-44.
Huang. S. C., and Y. P. Chang (1984), Anisotropic heat conduction with mixed boundary conditions, Journal of Heat Transfer, 106, 646-648.
Jacob, C. E., and S. W. Lohman (1952), Nonsteady flow to a well of constant drawdown in an extensive aquifer, Transactions, American Geophysical Union, 33(4), 559-569.
Javandel, I., and P. A. Witherspoon (1980), A Semianalytical Solution for Partial Penetration in Two-Layered Aquifers, Water Resources Research, 16(6), 1099-1106.
Kirkham, D., and W. L. Powers (1972), Advanced Soil Physics, pp. 140- 159, Appendix 2, John Wiley, New York.
Melville, J. G., F. J. Molz, O. Guven, and M. A. Widdowson (1991), Multi- level slug tests with comparisons to tracer data, Ground Water, 29(6), 897-907.
Mishra, S., and D. Guyonnet (1992), Analysis of observation-well response during constant-head testing, Ground Water, 30(4), 523-528.
Selim, M. S., and D. Kirkham (1974), Screen theory for wells and soil drainpipes, Water Resources Research, 10(5), 1019-1030.
Sneddon, I. N. (1972), The Use of Integral Transforms, McGraw-Hill, New York.
Stehfest, H. (1970), Numerical inversion of laplace transforms, Commun. ACM, 13, 47-39.
Streltsova, T.D. (1988), Well Testing in Heterogeneous Formations, An Exxon Monograph, John Wiley and Sons, New York, 423 pp..
Thies, C. V. (1935), The relation between the lowering of the pizeometric surface and the rate and duration of discharge of a well using ground- water storage, Transactions, American Geophysical Union, 16, 519-524.
Wikramaratna, R. S. (1984), An analytical solution for the effects of adstraction from a multiple-layered aquifer with no cross flow, Water Resources Research, 20(8), 1067-1074.
Zemansky, G. M. and C. D. McElwee (2005), High-Resolution Slug Testing, Ground Water, 43(2), 222-230.
Zlotnik, V. A., and B. R. Zurbuchen (2003), Field study of hydraulic conductivity in a heterogeneous aquifer: Comparison of single-borehole measurements using different instruments, Water Resources Research, 39(4), 1101, doi:10.1029/2002WR001415.