跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周明達
Min-Da Chuo
論文名稱: 熱電漿奈米微粒製備機台開發之初步研究
Preliminary Study on Development of Thermal Plasma Systems for Nanoparticles Synthesis
指導教授: 張木彬
Moo-Been Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 111
中文關鍵詞: 熱電漿奈米微粒二氧化鈦
外文關鍵詞: thermal plasma, nanoparticles, titanium dioxide
相關次數: 點閱:7下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    氣相合成法在奈米粉體合成技術中相對優勢較大,本研究利用熱電漿作為奈米粉體氣相合成之熱源,嘗試自行組裝一熱電漿奈米微粒製備機台。在研究過程中,我們總共組裝三套系統,第一套「電弧系統」雖可產生奈米微粒,但由於製程中有大量焊渣產生,且生成的粉體易形成硬團聚結構,因此將系統更改為「非傳輸型熱電漿-管狀反應器」。第二套系統生成粉體的測試中,由於反應器斷面積、容積太小(斷面積9.5 cm2;容積0.95 L),不利冷卻氣體與電漿氣流混合,加上冷卻氣體僅從單一方向注入,使得混合不均勻,造成冷卻效果不佳、微粒成長距離長,因而生成之微粒粒徑分布極廣。為改善冷卻效果,進一步將反應器變更為斷面積、容積較大(斷面積900 cm2;72 L)之水冷不鏽鋼反應器,稱之為APTPR(atmospheric pressure thermal plasma reactor),經測試比較,APTPR確能有效縮短微粒成長區間,生成奈米微粒。
    接著探討不同的操作條件如何影響APTPR生成微粒之粒徑與相態,包括進料方式、進料速率、電漿功率、冷卻氣體流量與系統壓力等,此部份是以氯化法生成二氧化鈦為例。實驗發現,從火炬內進料可得晶相(金紅石為主)之二氧化鈦,但其粒徑分布較寬,約10~40 nm;從電漿焰側邊進料可得非晶相之二氧化鈦,其粒徑均一,約9 nm左右。於粒子尺寸操控方面,四氯化鈦進流流量愈大,則生成微粒比表面積愈小,從0.41 lpm之179 m2/g下降到0.59 lpm之93 m2/g。
    為進一步提升製程之完整性,研究中亦嘗試以超音波技術分散自行合成的奈米粉體,實驗發現,分散劑DT-760之最佳添加濃度為0.5%,同時因為相對之空穴強度較強,建議以20,000 Hz之超音波作為粒子分散時之機械力來源;而隨著能量密度增加,分散效果愈顯著。


    Abstract
    Generation of nonoparticles via gas-phase reaction has many advantages over other methods. This study utilizes thermal plasma as the energy source for nanoparticles synthesis and aims to develop a thermal plasma system to synthesize nanoparticles. Three devices have been developed for the purpose. Although the first one is capable of producing nanoscale particles, a lot of welding slags are produced during the process and the obtained particles are apt to form hard aggregates. Therefore, another system based on non-transferred thermal plasma is developed. Due to small cross section and volume, corresponding to 9.5 cm2 and 0.95 L, the quenching gas and plasma gas cannot be well mixed. Besides, the fact that the quenching gas is injected in one direction causes the cooling performance is not good enough for obtaining narrow particle size distribution. In order to improve the cooling performance, a water cooling steel reactor with larger cross section (900 cm2) and volume (72 L) is designed and constructed and named as APTPR (atmospheric pressure thermal plasma reactor). Compared with the results obtained with the senond system, APTPR can effectively narrow down particle size distribution.
    The influences of several operating parameters, including precursor feeding way, feeding rate, plasma power, flow rate of quenching gas and pressure on particle sizes and crystal form are investigated in this study. The experimental results indicate that the TiO2 powder synthesized by TiCl4 fed through plasma torch is mainly rutile. However, the particles size distribution is broader, about 10-40 nm. Amorphous TiO2 particles with uniform size, corresponding to 9 nm, can be obtained while TiCl4 is injected into plasma jet. Moreover, a higher feeding flow rate of TiCl4 results in the smaller specific surface area of the particles. The specific surface area obtained using flow rate of 0.41 and 0.59 lpm are 179 and 93 m2/g, respectively.
    To overcome particle agglomeration problem, dispersion of the original particles via supersonic technique is conducted in this study as well. Experimental results indicate the optimal concentration of surfactant DT-760 is 0.5%. Due to the higher strength of cavitation, using audio frequency of 20,000 Hz as the mechanical source is suggested. Dispersion of generated particles is better as a higher energy density is applied.

    總目錄 摘 要 I Abstract II 總目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1-1 研究動機及目的 1 第二章 文獻回顧 3 2-1 奈米科技 3 2-2 奈米材料的基本特性 4 2-2-1 量子尺寸效應 4 2-2-2 巨觀量子穿隧效應 6 2-2-3 小尺寸效應 7 2-2-4 表面效應 7 2-3 奈米材料應用在環境上的幾個例子 8 2-3-1 奈米零價金屬在地下環境現地復育之應用 8 2-3-2磁性顆粒處理CMP(chemical mechanical polishing)廢水 9 2-3-3 改質二氧化鈦光觸媒應用於光還原二氧化碳 10 2-3-4 二氧化鈦於可見光照射下去除一氧化氮 11 2-3-5 利用不同氮摻雜方式之光觸媒處理異丙醇揮發性有機氣體 13 2-3-6 光觸媒於污水處理之應用 13 2-3-7 奈米金觸媒 14 2-3-8 氧化鋅 15 2-3-9 奈米粒子之尺寸大小與其催化效果 15 2-3-9-1 光觸媒作用原理 15 2-3-9-2 紅移與藍移 16 2-4 電漿 17 2-4-1 電漿簡介 17 2-4-2 弧光放電與直流電弧電漿 18 2-4-3 熱電漿系統潛在的污染與危害 20 2-5 熱電漿程序合成奈米粉體之基本原理 21 2-5-1 均質成核 21 2-5-2 奈米顆粒產生過程概述 24 2-5-3 熱電漿過程中之物種變遷 25 2-5-4 硬團聚結構 26 2-6 製程參數對產物粒徑之影響 28 2-6-1 固態料之進料粒徑 28 2-6-2 氣態物種過飽和比與冷卻效果 28 2-6-3 進料速率 29 2-6-4 壓力 30 2-6-5 輸入能量 31 2-7 奈米粉體的分散 33 2-7-1 潤濕 33 2-7-2 機械能 34 2-7-3 膠體系統之穩定 35 第三章 系統架設 40 3-1 研究流程 40 3-2 電弧系統 41 3-2-1 實驗設計 - 冷卻氣體流量對電弧系統生成微粒粒徑之影響 41 3-2-2 電弧系統-實驗設備 42 3-2-3 電弧系統-結果與討論 42 3-3 非傳輸型熱電漿系統 - 管狀反應器 45 3-3-1 火炬性質初探 45 3-3-2 設備組裝 48 3-3-3 實驗設計-管狀反應器生成之微粒粒徑隨距離的變化 50 3-3-4 管狀反應器-實驗設備 51 3-3-5 管狀反應器-結果與討論 51 3-3-6 火口熔蝕 56 3-4 非傳輸型熱電漿系統 - APTPR(atmospheric pressure thermal plasma reactor) 58 3-4-1 設備組裝 58 3-4-2 APTPR與管狀反應器比較 59 第四章 APTPR操作特性與粉體後處理 62 4-1 APTPR製備二氧化鈦 – 從電漿焰側邊進料 62 4-1-1 實驗設計 62 4-1-2 主要實驗設備 63 4-1-3 實驗結果-功率 64 4-1-4 實驗結果-壓力 65 4-1-5 實驗結果-冷卻氣體流量 66 4-1-6 實驗結果-進料速率 67 4-1-7 SEM影像與XRD晶相分析 69 4-2 APTPR製備二氧化鈦 – 從火炬內進料 78 4-3 光催化測試 81 4-4 樣品後處理 - 分散 84 第五章 結論與建議 88 5-1 結論 88 5-2 建議 89 參考文獻 90 English Reference 90 中文文獻 94 網路參考資料 97 圖目錄 圖2.1 全球各地區奈米科技之研發投資趨勢 4 圖2.2 固體中的能帶-能隙圖 5 圖2.3 絕緣體與導體之能帶-能隙圖 5 圖2.4 電子產生的量子駐波圖 6 圖2.5 金微粒子融點的粒徑依存性 7 圖2.6 反應性鐵牆示意圖 9 圖2.7 不同粒徑Fe3O4之飽和磁化率 10 圖2.8 皿式批次光催化還原反應系統示意圖 11 圖2.9 產物隨相對濕度變化之趨勢圖 11 圖2.10 日光中各波長所佔的量 12 圖2.11 光觸媒去除NO的反應行為 12 圖2.12 光觸媒大氣淨化實驗結果 13 圖2.13 奈米金微粒直徑對(A)活性(B)能量帶寬之影響 14 圖2.14 電子電洞對示意圖 16 圖2.15二氧化鈦一次粒徑及二次粒徑大小對光分解三氯乙烯效率之影響 𨔟 16 圖2.16 觸媒活性對粒子尺寸之依存性 17 圖2.17 物質四態 18 圖2.18 傳輸型電漿火炬(a)火炬構造;(b)工作示意圖 19 圖2.19 非傳輸型電漿火炬(a)火炬構造;(b)表面塗裝作業示意圖 20 圖2.20 沿火炬出口中心線之物種濃度分布圖 21 圖2.21 分子簇半徑與其自由能之相對關係 22 圖2.22 奈米顆粒之形成機制 24 圖2.23 團聚結構 24 圖2.24 融合程序示意圖 25 圖2.25 Al-O-N-Ar四元素系統之最小自由能圖 25 圖2.26 熱電漿程序中含鋁元素物種隨時程演化示意圖 26 圖2.27 顆粒於氣流碰撞後可能產生的情況 27 圖2.29 有無冷卻氣體對傳輸型電漿系統生成的銦顆粒粒徑之影響 29 (A)無冷卻氣體(B)9.6 lpm之冷卻氣體(氬氣) 29 圖2.30 氣流中鋁原子含量高低對產出顆粒比表面積之影響 30 圖2.31 二氧化鈦薄膜之AFM顯微觀測圖 31 圖2.32 不同反應溫度下產出之二氧化鈦微粒TEM觀測圖 32 圖2.33 傳輸型電漿系統電流與生成之鎳微粒粒徑關係圖 32 圖2.34 傳輸型電漿系統電流與生成之氧化鋅微粒粒徑關係圖 32 圖2.35 接觸角與潤濕性之關係 33 圖2.36 接觸角量測示意圖 34 圖2.37 分散奈米粉體的困難性 34 圖2.38 濕式介質研磨分散機制/機構 35 圖2.39 高分子型分散劑在粉體粒子表面的吸附作用 36 圖2.40 化學機械研磨廢水在不同pH值與電解質濃度下之界達電位 38 圖3.1 研究流程圖 40 圖3.2 電弧系統示意圖 42 圖3.3 弧光放電 42 圖3.4 電弧系統產出微粒之SEM顯微觀測圖(a)自由熱對流(b)強制對流 43 圖3.5 不同對流條件下,電弧系統產出之微粒粒徑分布圖 44 圖3.6 Mahoney與Andres(1995)以傳輸型電漿生成銦顆粒之結果 44 圖3.7 沉積於玻璃壁面的黃色氧化釩粉末與黑色焊渣 44 圖3.8 氧化釩粉體之硬團聚結構 45 圖3.9 電離子切割機工作示意圖 46 圖3.10 不同電漿氣體與不同功率下之電漿焰照片 46 圖3.11 不同電漿氣體與不同功率情況下沿火炬出口中心線之溫度分布 47 圖3.12 陳亮瑜(2000)模擬空氣電漿與氬氣電漿沿火炬出口中心線之溫度分布 47 圖3.13 管狀反應器示意圖 48 圖3.14 不銹鋼進料器示意圖 49 圖3.15 進料速率隨時程的變化 49 圖3.16 棕色粉末 52 圖3.18 無通入鋁粉之電漿焰 53 圖3.20 功率與能量密度相對圖 53 圖3.21 棕色粉末之XRD圖譜 54 圖3.22 利用DLS技術所測得之前、中、後區棕色懸浮液之粒徑分布圖 55 圖3.23 王鍾桂(2003)以高週波氣凝法合成之微粒隨收集距離的變化 55 圖3.24 火口熔蝕產生的微粒之SEM觀測圖 57 圖3.25 不同電漿氣體與不同功率操作後之火口照片 58 圖3.26 APTPR示意圖 59 圖3.27 鋁粉通入APTPR示意圖 60 圖3.28 利用DLS技術所測得之上、中、下區粉體粒徑分布 60 圖3.29 沉積於APTPR與管狀反應器各區之微粒粒徑分布 61 圖4.1 氣體注入口噴出氬氣與四氯化鈦混合氣體 63 圖4.2 載流氣體(氬氣)流量與被帶起之四氯化鈦氣流量 63 圖4.3 二氧化鈦濾餅表面(a)剛採完樣;(b)靜置一天後 64 圖4.4 反應腔體中之二氧化鈦 65 圖4.6 壓力對微粒比表面積與沿火炬出口中心線不同距離處溫度之影響 66 圖4.7 氧氣流量對微粒比表面積與沿火炬出口中心線不同距離處溫度之影響 67 圖4.8 四氯化鈦流量對微粒比表面積與沿火炬出口中心線不同處溫度之影響 68 圖4.9 氣流中鈦(矽)原子莫爾分率對產物比表面積之影響 69 圖4.10 沉積於上區之微粒(60,000倍率) 70 圖4.12 沉積於下區之微粒(60,000倍率) 71 圖4.13 成品未鍛燒與不同溫度下鍛燒二小時之XRD圖譜 72 圖4.14 未鍛燒二氧化鈦之SEM觀測圖(60,000倍率) 73 圖4.15 鍛燒溫度200℃之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 74 圖4.16 鍛燒溫度300℃之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 74 圖4.17 鍛燒溫度400℃之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 75 圖4.18 鍛燒溫度500℃之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 75 圖4.19 鍛燒溫度600℃之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 76 圖4.20 鍛燒溫度700℃之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 76 圖4.21 鍛燒溫度800℃之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 77 圖4.22 微粒粒徑隨鍛燒溫度變化圖 77 圖4.23 火炬內進料所得樣品於不同溫度下鍛燒二小時之X射線繞射圖 78 圖4.24 二氧化鈦未鍛燒之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 79 圖4.25 鍛燒溫度500℃之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 79 圖4.26 鍛燒溫度600℃之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 80 圖4.27 鍛燒溫度700℃之SEM顯微觀測圖(a)30,000倍率(b)60,000倍率 80 圖4.28 微粒粒徑隨鍛燒溫度變化圖 81 圖4.29 簡易光催化系統 82 圖4.30 經4.5小時光催化後之甲基藍溶液與初始溶液比較圖 82 圖4.31 不同光觸媒隨時間對甲基藍之去除率比較圖 82 圖4.32 商用觸媒與自製觸媒(側邊進料)之XRD圖譜 83 圖4.33 側邊進料所得非晶二氧化鈦於樣品瓶內靜置一個月後之XRD圖譜 84 圖4.34 奈米非晶質二氧化鈦於不同pH值下之界達電位 85 圖4.35 不同pH值之二氧化鈦膠體溶液沉降性比較圖 85 圖4.36 不同DT-760濃度對粉體分散性質之影響 86 圖4.37 頻率為43,000 Hz之超音波在不同震盪時間下對粉體之分散效果比較圖 86 圖4.38 頻率為20,000 Hz之超音波在不同功率下對粉體之分散效果比較圖 86 圖4.39 音頻與空穴強度之關係圖 87 圖4.40 超音波分散技術分散前後比較圖 87 圖4.41 以DLS技術比較不同分散技術對染料之分散性 87 表目錄 表1.1 奈米粉體製造技術之優缺點比較 1 表2.1 銅微粒粒徑對比表面積與表面能的影響 8 表2.2 過飽和比與成核速率之關係表 23 表2.3 凝集時間與融合時間於不同時間點之比較 27 表2.4 過飽和比與冷卻效果對生成顆粒粒徑之影響 29 表2.5 壓力對傳輸型電漿生成的氧化鋅微粒粒徑之影響 31 表2.6 界面活性劑種類 36 表2.7 不同粉體分散於溶劑內所需之界面活性劑 37 表3.1 實驗相關參數 50 表3.2 Ananthapadmanabhan等人(1996)之實驗參數 51 表3.3 以DC非傳輸型電漿製備奈米顆粒之操作參數比較表 52 表3.4 XRF元素分析 54 表3.5 不同功率及冷卻氣體(空氣)流量之尾流溫度 56 表3.6 不同功率與不同電漿氣體之火口熔蝕率 57 表3.6 管狀反應器與APTPR延火炬出口中心線不同距離處之溫度比較 60 表4.1 實驗相關參數 64 表4.2 實驗相關參數 66 表4.3 實驗相關參數 67 表4.4 實驗相關參數 68 表4.5 不同鍛燒溫度下之微粒粒徑 77 表4.6 火炬內進料與側邊進料微粒成長趨勢比較表 81 表4.7 實驗條件 81

    參考文獻
    English Reference:
    Allen, T., Particle Size Measurement, 4 Ed, Chapman and Hall (1990).
    Almquist, C. B., and P. Biswas, “Role of Synthesis Method and Particle Size of Nanostructured TiO2 on It’s Photoactivity,” Journal of Catalysis, 212(2002).
    Ananthapadmanabhan, P.V., K.P. Sreekumar, N. Venkatramani, P.K. Sinha, and P.R. Taylor, “Characterization of Plasma-Synthesized Alumina,” Alloys and Compounds, 244(1996).
    Ananthapadmanabhan, P.V., T. K. Thiyagarajan, K. P. Sreekumar, and N.Venkatramani, “Formation of Nano-Sized Alumina by In-Flight Oxidation of Aluminum Powder in a Thermal Plasma Reactor,” Scripta Materialia, 50(2003).
    Ando, Y., X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, and S. Iijima, “Arc Plasma Jet Method Producing Single-wall Carbon Nanotubes,” Diamond and Related Materials, 10(2001).
    Bae, E., and W. Choi, “Highly Enhanced Photoreductive Degradation of Perchlorinated Compounds on Dye-Sensitized metal/TiO2 under Visible Light,”Environmental Science & Technology, 37(2003).
    Balabanova E., “Silica Nanoparticles Produced by Thermal Arc Plasma Modeling,” Optoelectronics and Advanced Materials, 5(2003).
    Balabanova, E., “Mechanism of Nanoparticle Generation by High-temperature Methods,” Vacuum, 58(2000).
    Balabanova, E., “Nanoparticle Production under Conditions of a Non-isothermal Aerosol Flow Reactor,” Vacuum, 69(2003).
    Bhatkhande, D. S., V. G. Pangarkar, and A. A. C. M. Beenackers, “Photocatalytic Degradation for Environmental Application - A Review,” Chemical Technology and Biotecnology, 77(2002).
    Bica, I., “Nanoparticle Production by Plasma,” Material Science and Engineering, B68(1999).
    Bond, G. C., and D. T. Thompson, “Catalysis by Gold, ”Catalysis Reviews-Science and Engineering, 41(1999).
    Chen, C. K., “Microwave Plasma Processing of Unique Ceramic Particulate Materials,” Ph. D. Thesis, Department of Chemical Engineering, The Pennsylvania State University (2001).
    Chen, J. ,T. He, W. Wu, D. Cao, J. Yun, and C. K. Tan, “Adsorption of Sodium Salt of Poly(Acrylic) Acid (PAANa) on Nano-Sized CaCO3 and Dispersion of Nano-Sized CaCO3 in Water,” Colloids and Surfaces A, 232(2004).
    Cruz, A. C. D., and R. J. Munz, “Vapor Phase Synthesis of Fine Particles,” IEEE Transactions on Plasma Science, 25(1997).
    Diwald, O., T. L. Thompson, T. Zubkov, E. G. Goralsk, S. D. Walck, and J. T. Yates, “Photochemical Activity of Nitrogen-doped Rutile TiO2(110) invisible Light,”Journal of Physical Chemistry, 108(2004).
    Elliott, D., and W. X. Zhang, “Field Assessment of Nanoparticles for Groundwater Treatment,” Environmental Science and Technology, 35(2001).
    Fan, A. P. Somasundaran, and N. J. Turro, “Role of Sequential Adsorption of Polymer/Surfactant Mixtures and their Conformation in Dispersion/ Flocculation of Alumina,” Colloids and Surfaces A, 146(1999).
    Gillham, R. W., and S. F. Hannesin, “Metal-catalysed Abiotic Degradation of Halogenated Organic Compounds,” International Association of Hydrogeology, Hamilton, Ontario, Canada (1992).
    Green, M. L., W.F. Rhine, and P. Calvert, ”Preparation of Poly(Ethylene Glycol)˙Grafted Alumina,” Journal of Materials Science Letters, 12(1993).
    Haas, V., H. Gleiter, and R. Birringer, “Synthesis of Nanostructured Materials by the Use of a Thermophoretic Forced Flux System,” Scripta Materialia, 28(1993).
    Halliday, D., R. Resnick, and J. Walker, Fundamentals of Physics, 6 Ed, John-Wiely and Sons, New York (2003).
    Hao, W. C., S. K. Zheng, C. Wang, and T. M. Wang, “Comparison of the Photocatalytic Activity of TiO2 Powder with Different Particle Size,” Journal of Materials Science Letters, 21(2002).
    ISO 14887, Sample Preparation – Dispersing Procedures for Powders in Liquids (2000).
    Kamat, P. V., R. Huehn, and R. Nicolaescu, “A Sense and Shoot Approach for Photocatalytic Degradation of Organic Contaminants in Water,” Journal of Physical Chemistry, 106(2002).
    Karthikeyan, J., C. C. Berndt, J. Tikkanen, S. Reddy, and H. Herman, “Plasma Spray Synthesis of Nanomaterial Powders and Deposits,” Materials Science and Engineering A, 238(1997).
    Kitazawa, S., Y. Choi, and S. Yamamoto, “In Situ Optical Spectroscopy of PLD of Nano-structured TiO2,” Vacuum, 74(2004).
    Kodas, T. T., and M. Hampden-Smith, Aerosol Processing of Materials, 1Ed, Wiley-VCH, New York (1999).
    Kubo, R., “Electrical Properties of Metallic Fine Particles,” Journal of the Physical Society of Japan, 17(1962).
    Lien, H. L., and W. Zhang, “Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes,” Colloids and Surface A, 191(2001).
    Lim, T. H., S. M. Jeong, S. D. Kim, and J. Gyenis, “Photocatalytic Decomposition of NO by TiO2 Particles,” Photochemical and Photobiological Sciences A, 134(2000).
    Mahoney, W., and R. P. Andres, “Aerosol Synthesis of Nanoscale Clusters Using Atmospheric Arc Evaporation,” Materials Science and Engineering A, 204(1995).
    Maira, A. J., C. Y. Yeung, P. I. Lee, and C. K. Chan, “Size Effects in Gas-phase Photo-oxidation of Trichloroethylene Using Nanometer-sized TiO2 Catalyst,” Journal of Catalysis, 192(2000).
    Nanotechnology:The Technology for 21ST Century Asia-Pacific Economic Cooperation, Bangkok, Thailand. August 2002 Vol.Ⅱ
    Oh, S. M., and D. W. Park, “Production of Ultrafine Titanium Dioxide by DC Plasma Jet,” Thin Solid Films, 386(2001).
    Patton, T. C., Paint Flow and Pigment Dispersion, 1Ed, John-Wiely and Sons, New York (1978).
    Porter, D. A., K. E. Easterling, Phase Transformations in Metals and Alloys, 2 Ed, Nelson Thornes, Cheltenham (1981).
    Raizer, Y. P., Gas Discharge Physics, 1Ed, Springer Verlag, New York (1991).
    Robert, E., R. Hill, and R. Abbaschian, Physical Metallurgy Principles, PWS-Kent, 3Ed, Boston (1992).
    Santhiya, D., G. Nandini, S. Subramanian, K. A. Natarajan, and S. G. Malghan, “Effect of Polymer Molecular Weight on the Adsorption of Polyacrylic Acid at the Alumina-Water Interface,” Colloids and Surfaces A, 133(1998).
    Seinfeld, J.H., Atmospheric Chemistry and Physics of Air Pollution, 1Ed, John-Wiley
    and Sons, New York (1986).
    Shi, L., C. Li, A. Chen, Y. Zhu, and D. Fang, “Morphology and Structure of TiO2 Particles Synthesized by Gas-phase Reaction,” Materials Chemistry and Physics, 66(2000).
    Shigeta, M., T. Watanabe, and H. Nishiyama, “Numerical Investigation for Nano-particle Synthesis in an RF Inductively Coupled Plasma,” Thin Solid Films, 457 (2004).
    Soucy, N. D., and J. L. Meunier, “A Study of Magnetically Rotating Arc Stability Using Fluctuation in Voltage, Velocity and Emission Line Intensity,” Journal of Physics D-Applied Physics, 28(1995).
    Spurr, R. A., and H. Myers, “Quantitative Analysis of Anatase-Rutile Mixtures with an X-ray Diffractior,” Anal. Chem., 29 (1957).
    Stark, W. J., K. W. Sotiris, E. Pratsinis, and A. Baiker, “Flame Aerosol Synthesis of Vanadia-Titania Nanoparticles:Structural and Catalytic Properties in the Selective Catalytic Reduction of NO by NH3,”Journal of Catalysis, 197(2001).
    The Royal Society and Royal Academy Engineering, Nanoscience and Nanotechnologies:Opportunities and Uncertainties, 2004.
    Todaka, T., K. Tsuchiya, M. Umemoto, M. Sasaki, and D. Imai, “Growth of Fe3O4 Whiskers Solid Solution Nanoparticles of Fe-Cu and Fe-Ag Systems Produced by DC Plasma Jet Method,”Materials Science and Engineering A, 340(2003).
    Valden, M., X. Lai, D. W. Goodman, “Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance in Nonmetallic Properties,” Science, 281(1998).
    Zhang, Y., A. Weidenkaff, and A. Reller, “Mesoporous Structure and Phase Transition of nanocrystalline TiO2,” Materials Letters, 54(2002).
    中文文獻:
    王鳳英,界面活性劑的原理與應用,高立出版社,五版,台北(1996)。
    尹邦耀,奈米時代,五南出版社,初版,台北(2002)。
    王鍾桂,「高週波氣凝法製備奈米微粒之研究」,碩士論文,台北科技大學機電整合研究所,台北(2003)。
    李秋煌,「改善環境的仙丹」,科學發展,370期(2003)。
    吳怡貞、袁中新、羅卓卿,「金屬改質奈米二氧化鈦光觸媒應用於光還原二氧化碳氣體」,第二屆環境保護與奈米科技研討會論文集,新竹(2005)。
    林錕松、張乃斌、王鴻博,「廢棄物電漿熔融處理技術與實務」,環保月刊,第二卷(2002)。
    林登連,「高功率直流電漿火炬電極熔蝕之研究」,碩士論文,中原大學機械工程系,中壢(2003)。
    林秀芬、廖世傑、洪松慰,「The DC Thermal Plasma Synthesis of ZnO Nanoparticles for Visible-Light Photocatalysis」,第一屆環境保護與奈米科技研討會論文集,新竹(2004)。
    林有銘、曾堯宣、黃嘉宏、黃珧玲、劉淑鈴、巢志成、陳建志、王奕凱,「奈米二氧化鈦光觸媒在紫外光與可見光照射下去除一氧化氮之研究」,第二屆環境保護與奈米科技研討會論文集,新竹(2005)。
    呂宗昕,圖解奈米科技與光觸媒,商周出版社,初版,台北(2003)。
    林定一,「微粒化分散設備之應用與比較」,奈米微粒生產設備技術研討會論文集,新竹(2004)。
    高濂、鄭珊、張青紅,奈米光觸媒,五南出版社,初版,台北(2004)。
    孫靜、高濂、郭景坤,無機材料學報,第十四卷(1999)。
    馬遠榮,奈米科技,商周出版社,初版,台北(2002)。
    徐國財、張立德,奈米複合材料,五南出版社,初版,台北(2004)。
    曹茂盛、關長斌、徐甲強,奈米材料導論,學富文化事業,初版,台北(2002)。
    莊萬發,超微粒子理論應用,復漢出版社,初版,台南(1994)。
    莊允中,「奈米表面技術發展趨勢」,經濟部技術處研究報告,台北(2003)。
    張有義、郭蘭生,膠體及界面化學入門,高立出版社,二版,台北(2001)。
    黃玲娉,「紡織品奈米技術開發與應用」,中國紡織中心研究報告,台北(2002)。
    張義和、徐敬添、鄒淑珍、陳守一、時國誠,「微/奈米粉體用高分子型分散劑」,化工技術,第十一卷(2003)。
    陳珮紋,「利用Fe3O4磁性顆粒處理化學機械研磨廢水」,碩士論文,中央大學環境工程研究所,中壢(2004)。
    陳建志、白曛綾、張宗良、鄧宗禹,「利用不同氮摻雜方式之奈米光觸媒於可見光與紫外光下處理異丙醇揮發性有機氣體之效率探討」,第二屆環境保護與奈米科技研討會論文集,新竹(2005)。
    陳亮瑜,「高溫電漿技術在核廢料處理之模型研究」,碩士論文,中原大學化學工程系,中壢(2000)。
    張立德,牟季美,納米材料和納米結構,科學出版社,初版,北京(2001)。
    黃政誠,「電漿電弧氣凝合成法製備奈米微粒」,碩士論文,台北科技大學機電整合研究所,台北(2003)。
    楊金鐘、張德光、洪志雄,「奈米級零價鐵粉懸浮液之分散性質初步探討」,第二屆環境保護與奈米科技研討會論文集,新竹(2005)。
    楊毓民,「界面活性劑」,化工技術,第一卷,(1993)。
    鄒大鈞,放電加工,復漢出版社,初版,台南(2001)。
    趙承琛,界面科學基礎,復文書局,初版,台南(1998)。
    鄭文桐、黃山峰,「超微粒子分散技術與其應用概況」,化工技術,第八卷(1997)。
    蔡明珊、張裕釧、林畢修平,「金奈米材料在空氣污染防治上之效能評估」,第二屆環境保護與奈米科技研討會論文集,新竹(2005)。
    閻子峰,奈米催化技術,五南出版社,出版,台北(2004)。
    賴佳伶,「零維鉛奈米粉粒超導磁穿透深度與粒徑關係探討」,碩士論文,中央大學物理研究所,中壢(2003)。
    賴耿陽,電漿工學的基礎,復文書局,初版,台南(1986)。
    環保署,「奈米科技與環境保護資料彙編」,行政院環境保護署科技顧問室,台北(2004)。
    顏志坤,「新型電漿電弧氣凝系統製作奈米粉末之研究」,碩士論文,交通大學機械工程系,新竹(2002)。
    羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民,奈米科技導論,全華出版社,初版,台北(2003)。
    簡國明、洪長春、吳典熹、王永銘、藍怡平,「奈米二氧化鈦專利地圖及分析」,行政院國家科學委員會科資中心,台北(2003)。
    蘇品書,超微粒子材料技術,復漢出版社,初版,台南(1989)。
    蘇程裕、周長彬,「電漿熔射技術之原理與應用」,機械月刊,第二十一卷(1995)。
    網路參考資料:
    Http://ivy2.epa.gov.tw/out_web/cooperation/nanotech/ch_db/Documents/PDF/9302_04.pdf(download on 2005/3/16)
    Http://pruffle.mit.edu/~ccarter/3.21/Lecture_24/(download on 2005/3/28)
    Http://www.almaden.ibm.com/vis/stm/corral.html(download on 2005/3/16)
    Http://www.bransoninchinese.com/tc/Cleaning/UltrasonicCleaningTechnology.htm(download on 2005/3/18)
    Http://www.cepd.gov.tw/2008(download on 2005/1/15)
    Http://www.cnn.com/TECH/9602/radioactive_cleanup/plasma_action.jpg(download on 2005/2/14)
    Http://www.esabcutting.com/zimages/H_Precision-Plasma.jpg(download on 2005/3/28)
    Http://www.grc.nasa.gov/WWW/EDB/Facilities/plasma_spray_facility.htm(download on 2005/2/14)

    QR CODE
    :::