| 研究生: |
蔡承修 Cheng-Hsiu Tsai |
|---|---|
| 論文名稱: |
3-10 GHz 寬頻低雜訊放大器 3-10 GHz Wideband Low Noise Amplifiers |
| 指導教授: |
辛裕明
Yue-ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 低雜訊放大器 、超寬頻系統 |
| 外文關鍵詞: | ultra-wideband, low-noise amplifier |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是以TSMC 0.18 um CMOS 製程,研製應用於超寬頻(UWB)系統之寬頻低雜訊放大器,電路的設計主要考量為低成本和低功率,朝向商品化邁進。論文中使用兩種電路架構,一為採用電感電容濾波器形式做寬頻輸入匹配,一為使用共閘極架構做為輸入端。
第一部份實現兩個寬頻低雜訊放大器,皆採用電感電容濾波器形式做寬頻輸入匹配,在其中一個電路上搭配達靈頓對架構來增加截止頻率提高增益。未搭配達靈頓對架構的寬頻低雜訊放大器,在直流功率消耗15.4 mW時可以得到最大增益為11 dB,3-dB頻寬為3.9 – 10.3 GHz,最低雜訊指數為4.5 dB,在頻帶內輸入反射損耗均小於-13 dB,三階截斷點大於-9 dBm,其晶片面積為0.86 mm2。而搭配達靈頓對架構的寬頻低雜訊放大器,在直流功率消耗20.3 mW時可以得到最大增益為13 dB,3-dB頻寬為3.0 – 10.7 GHz,最低雜訊指數為3.57 dB,在頻帶內輸入反射損耗均小於-8 dB,三階截斷點大於-14 dBm,其晶片面積為0.78 mm2。
第二個部份的寬頻低雜訊放大器,為了減少晶片面積和降低功率消耗,使用共閘極架構具備寬頻匹配特性做為輸入端,並利用電流重複利用的技術提昇增益且節省直流功率的消耗。在直流功率消耗7.2 mW 時可以得到最大增益為14.3 dB,3-dB頻寬為2.7 – 8.4 GHz,最低雜訊指數為3.98 dB,在頻帶內輸入反射損耗均小於-8 dB,三階截斷點大於-12.5 dBm,其晶片面積為0.78 mm2。
In this thesis, we design three broadband low noise amplifiers (LNAs) for ultra-wideband (UWB) communication systems, which are implemented in TSMC 0.18 um CMOS technology. The design of the amplifiers concentrates on low power-consumption and low costs as well.
In the first section, two amplifiers are designed on the basis of LC high-pass filters which are used for wideband impedance match. The two amplifires are designed with and without Darlington pair, respectively. In the second circuit, a Darlington pair is used at the second stage to achieve high gain performance. The measurement of the first LNA without Darlington pair shows that the maximum gain is 11 dB, 3-dB bandwidth is from 3.9 GHz to 10.3 GHz, the minimum noise figure is 4.5 dB, S11 is less than -13.4 dB, IIP3 is better than -9 dBm, and the total power consumption is 15.4 mW. The chip size is 0.86 mm2. For the second LNA with Darlington pair, the measurement shows that the maximum gain is 13 dB, 3-dB bandwidth is from 3.0 GHz to 10.7 GHz, the minimum noise figure is 3.57 dB, S11 is less than -8 dB, IIP3 is better than -14 dBm, and the total power consumption is 20.3 mW. The chip size is 0.78 mm2.
In the second section, a low-power consumption and high-gain broadband LNA utilizing a common-gate stage connected with a common-source stage by using a current-reused structure is proposed. The measured maximum gain is 14.2 dB, 3-dB bandwidth is from 2.7 GHz to 8.4 GHz, the minimum noise figure is 3.93 dB, S11 is less than -8 dB, IIP3 is better than -12.5 dBm, and the total power consumption is 7.2 mW. The chip size is 0.78 mm2.
【1】 “IEEE 802.15 WAPN high rate alternative PHY task group 3a (TG3a) ,” http://www.ieee802.org/15/pub/TG3a.html, 2008.
【2】 G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microwave Magazine, vol. 4, pp. 36–47, February 2003.
【3】 M. P. Wylie-Green, P. A. Ranta and J. Salokannel, “Multi-band OFDM UWB solution for IEEE 802.15.3a WPANs”, Advances in Wired and Wireless Communication, 2005 IEEE/Sarnoff Symposium, pp. 102–105, April 2005.
【4】 A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE Journal of Solid-State Circuits, Vol. 39, pp. 2259–2268, Dec. 2004.
【5】 劉文淵,「Ka頻帶低雜訊放大器和共平面波導低通濾波器分析設計與實現」,國立中央大學,碩士論文,民國九十三年。
【6】 張盛富,張嘉展,無線通訊射頻晶片模組設計,全華圖書股份有限公司,台北縣,民國九十六年。
【7】 本成和彥著,呂學士譯,無線通訊射頻晶片模組設計,全華圖書股份有限公司,台北縣,民國八十六年。
【8】 D. M. Pozar, “Microwave engineering, ” 2nd ed. New York Wiley, 1998.
【9】 F. Zhang, P. R. Kinget, “Low-power programmable gain CMOS distributed LNA,” IEEE Journal of Solid-State Circuits, Vol. 41, pp. 1333–1343, June 2006.
【10】 Y. H. Yu, Y. J. Chen, Heo D, ”A 0.6 V low power UWB CMOS LNA,” IEEE Microwave and Wireless Components Letters, Vol. 17, pp.229–231, March 2007.
【11】 Y. J. Lin, S. H. Hsu, J. D. Jin and C. Y. Chan, ”A 3.1-10.6GHz ultra-wideband CMOS low noise amplifier with current-reuse technique,” IEEE Microwave and Wireless Components Letters, Vol. 17, pp.232–234, March 2007.
【12】 A. Ismail and A. A. Abidi, “A 310-GHz low-noise amplifier with wideband LC-ladder matching network,” IEEE Journal of Solid-State Circuits, Vol. 39, pp. 2269–2277, Dec. 2004.
【13】 C. T. Fu and C. N. Kuo, “3~11-GHz CMOS UWB LNA using dual feedback for broadband matching,” Radio Frequency Integrated Circuits Symposium, June 2006.
【14】 李典錡,「覆晶式Ka頻段接收機前端電路與分佈式寬頻放大器之研製」,國立中央大學,碩士論文,民國九十四年。
【15】 X. Duo, L. R. Zheng, M. Ismail, H. Tenhunen, “Broadband CMOS LNAs for IR-UWB receiver,” NORCHIP Conference, 2005.
【16】 D. K. Shaeffer, T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE Journal of Solid-State Circuits, Vol. 32, pp. 745 –759, May 1997.
【17】 T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits, ” 2nd ed. Cambridge University Press, 1998.
【18】 H. H. Hsieh and L. H. Lu, “Design of ultra-low-voltae RF frontends with complementary current-reused architectures,” IEEE Transactions on Microwave Theory and Techniques, Vol. 55, pp. 1445–1458, July 2007.
【19】 C. Y. Cha and S. G. Lee, “A low power, high gain LNA topology,” IEEE International Conference on Microwave and Millimeter Wave Technology Proceedings, pp. 420–423, 2000.
【20】 Y. Shim, C. W. Kim, J. Lee and S. G. Lee, “Design of full band UWB common-gate LNA,” IEEE Microwave and Wireless Components Letters, Vol. 17, pp. 721–723, October 2007.
【21】 K. H. Chen, J. H. Lu, B. J. Chen and S. I. Liu, “An ultra-wide-band 0.4–10-GHz LNA in 0.18-?m CMOS,” IEEE Transactions on Circuits and Systems, Vol. 54, pp. 217–221, March 2007.
【22】 林伯丞,「應用於3.1~10 GHz超寬頻收發機之CMOS前端電路設計」,國立東華大學,碩士論文,民國九十六年。
【23】 Y. Lu, K. S. Yeo, A. Cabuk, J. Ma, M. A. Do and Z. Lu, “A novel CMOS low-noise amplifier design for 3.1 to 10.6-GHz ultra-wide-band wireless receivers,” IEEE Transactions on Circuits and Systems, Vol. 53, pp. 1683–1692, August 2006.
【24】 C. F. Liao and S. I. Liu, “A broadband Noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers,” IEEE Journal of Solid-State Circuits, Vol. 42, pp. 329 –339, February 2007.
【25】 J. S. Paek, B. Park and S. Hong, “CMOS LNA with Darlington-pair for UWB systems,” IEE Electronics Letters, Vol. 42, pp. 913 –914, August 2006.
【26】 T. K. Nguyen, C. H. Kim, G. J. Ihm, M. S. Yang and S. G. Lee, “CMOS low-noise amplifier design optimization techniques,” IEEE Transactions on Microwave Theory and Techniques, Vol. 52, pp. 1433–1442, May 2004.
【27】 A. J. Scholten, L. F. Tiemeijer, R. V. Langevelde, R. J. Havens, Adrie T. A. Zegers-van Duijnhoven and V. C. Venezia, “Noise modeling for RF CMOS circuit simulation,” IEEE Transactions on Electron Devices, Vol. 50, pp. 618–632, March 2003.
【28】 H. L. Kao and K. C. Chang, “Very low-power CMOS LNA for UWB wireless receivers using current-reused topology,” Solid State Electronics, Vol. 52, pp. 86–90, January 2008.
【29】 包克豪,「應用於超寬頻無線射頻收發機之CMOS分散式主動射頻積體電路之研究設計」,國立成功大學,碩士論文,民國九十五年。
【30】 Y. Cheng, M. J. Deen and C. H. Chen, “MOSFET modeling for RF IC design,” IEEE Transactions on Electron Devices, Vol. 52, pp. 1286–1303, July 2005.
【31】 林志豪,「Ku-頻段微波覆晶積體化低雜訊放大器」,國立中央大學,碩士論文,民國九十六年。
【32】 S. K. Tank, C. F. Chan, C. S. Choy and K. P. Pun, “A 1.2 V, 1.8 GHz CMOS two-stage LNA with common gate amplifier as an input stage ,” Proc. ASIC, Vol. 2, pp. 1042–1045, October 2003.