| 研究生: |
傅靖雯 Ching-Wen Fu |
|---|---|
| 論文名稱: |
以Pd/AC觸媒行加氫脫氯降解OCDD/F之效率探討 Effect of Reducing Agent on the Catalytic Hydrodechlorination of Liquid-phase OCDD/F |
| 指導教授: | 張木彬 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 八氯戴奧辛/呋喃 、鈀活性碳觸媒 、觸媒加氫脫氯 |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究探討觸媒加氫脫氯技術對於溶解相OCDD/F之去除與降解,以具高化學還原特性之鈀活性碳(Pd/AC)觸媒進行加氫脫氯程序之效率測試。加氫脫氯反應乃利用鈀觸媒催化產生之氫原子取代含氯有機物之氯原子並脫氯成無毒性之產物。然而此技術較少應用於液相PCDD/Fs之去除且影響因子也尚未釐清,因此本研究以受高濃度OCDD/F污染之廢水作為研究標的,透過實驗室試驗探討各操作參數包括溶劑、溫度之影響並計算反應速率常數。實驗結果顯示於特定OCDD/F濃度,Pd/AC觸媒加氫脫氯反應以異丙醇為溶劑之去除及破壞效率較以甲醇為溶劑佳,於反應時間300分鐘對OCDD質量去除及破壞效率分別為99.8及95.3%,對OCDF質量去除及破壞效率分別為99.8及97.7%,使用高比率溶劑量對OCDD/F之去除效率又稍高於使用低比率溶劑量,就破壞效率而言,則是使用低比率醇類對OCDD/F破壞效率較佳,並且也進行PCDDs及PCDFs間之總體效率探討,而物種分布方面以OCDD/F佔主要,2,3,4,7,8-PeCDF為主要之毒性貢獻物種。此外反應速率常數計算結果顯示以異丙醇為溶劑之反應速率常數較甲醇大,又以50%異丙醇之OCDD及OCDF反應速率常數最高,分別為0.0048及0.0057 min-1。不同溫度下進行OCDD/F之加氫脫氯實驗結果顯示去除及破壞效率均隨反應溫度上升而增加,並藉由Arrhenius equation計算之OCDD及OCDF活化能分別為24.8與23.1 kJ/mole。觸媒重複性測試實驗結果顯示對OCDD/F之去除效率雖有些微下降,然仍可達91%以上,顯示此觸媒具有相當高之反應活性及穩定性。
Removal/destruction efficiency of liquid-phase OCDD and OCDF achieved with hydrodechlorination process (HDC) was experimentally evaluated over palladium activated carbon (Pd/AC) catalyst in liquid phase. Palladium catalyst is applied to catalyze dechlorination reaction and to replace chlorine atom of chlorine-containing organic pollutants with hydrogen atom to form nontoxic products. However, the literature on the removal PCDD/Fs of HDC reaction in liquid phase is limited and the influencing factors have not been clarified. Therefore, high-concentration OCDD/F are selected as targets, the effects of solvents and temperature on dechlorination efficiency were investigated via experimental tests. The experimental results showed that the highest hydrodechlorination efficiency is achieved with isopropanol as solvent. OCDD removal and destruction efficiencies were 99.7 and 95.3%, respectively, within 300 minutes. On the other hand, the removal and destruction efficiencies of OCDF were up to 99.8 and 97.7%, respectively. In addition, the OCDD/F removal efficiency achieved with the high volume content of 80% alcohols is higher than that of 50% alcohols, whereas the destruction efficiency of OCDD/F reveals the opposite trend. OCDD/F are the dominant species while 2,3,4,7,8-PeCDF is the major toxicity contributing species in both solid and liquid phases. Moreover, it is shown that the reaction rate constant of isopropanol as solvent is higher than that of methanol toward OCDD/F removal. The highest rate constants of OCDD and OCDF with 50% as solvent isopropanol are 0.0048 and 0.0057 min-1, respectively. The activation energies of OCDD and OCDF calculated with the Arrhenius equation were 24.8 and 23.1 kJ/mole, respectively. The result of long-term experimental tests, indicate that the Pd/AC catalyst has good potential for removing PCDD/Fs from wastewater.
Australian Government Department of the Environment and Heritage, “National dioxins program, technical report No.3 inventory of dioxin emissions in Australia, 2004”, 2004.
Baeza, J.A., Calvo, L., Murzin, D.Y., Rodriguez, J.J., Gilarranz, M.A., “Kinetic analysis of 4-Chlorophenol hydrodechlorination catalyzed by Rh nanoparticles based on the two-step reaction and Langmuir–Hinshelwood mechanisms.” Catalysis Letters, 2014, 144, 2080–2085.
Baumgartner, R., McNeill, K., “Hydrodefluorination and hydrogenation of fluorobenzene under mild aqueous conditions.” Environmental Science & Technology, 2012, 46, 10199−10205.
Bokare, V., Jung, J.L., Chang, Y.Y., Chang, Y.S., “Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zero-valent zinc: modeling of rate kinetics and congener profile.” Journal of Hazardous Materials, 2013, 397– 402.
Boudart, M., “Kinetics of chemical processes.” Prentice-Hall, New Jersey, 1968.
Chen, N. “Kinetics of the hydrodechlorination reaction of chlorinated compounds on palladium catalysts.” Faculty of Worcester Polytechnic Institute, 2002.
Chen, N., Rioux, R.M., Barbosa, L.A.M.M., Ribeiro, F.H., “Kinetic and theoretical study of the hydrodechlorination of CH4−xClx (x =1−4) compounds on palladium.” Langmuir, 2010, 26 (21), 16615–16624.
Cobo, M., Conesa, J.A., Montes de Correa, C., “Effect of the reducing agent on the hydrodechlorination of dioxins over 2 wt.% Pd/γ-Al2O3.” Applied Catalysis B: Environmental, 2009, 92, 367–376.
Concibido, N.C., Okuda, T., Nishijima, W., Okada, M., “Deactivation and reactivation of Pd/C catalyst used in repeated batch hydrodechlorination of PCE.” Applied Catalysis B: Environmental, 2007, 71, 64–69.
Díaz, E., Casas, J.A., Mohedano, Á.F., Calvo, L., Gilarranz, M.A., Rodríguez, J.J., “Kinetics of the hydrodechlorination of 4-Chlorophenol in water using Pd, Pt, and Rh/Al2O3 catalysts.” Industrial & Engineering Chemistry Research, 2008, 47, 3840–3846.
Fueno, H., Tanaka, K., Sugawa, S., “Theoretical study of the dechlorination reaction pathways of octachlorodibenzo-p-dioxin.” Chemosphere, 2002, 48, 771–778.
Gómez-Quero, S., Díaz, E., Cárdenas-Lizana, F., Keane, M.A., “Solvent effects in the catalytic hydrotreament of haloaromatics over Pd/Al2O3 in water+organic mixtures.” Chemical Engineering Science, 2010, 65, 3786-3797.
Gómez-Sainero, M.L., Seoane, X.L., Arcoya, A., “Hydrodechlorination of carbon tetrachloride in the liquid phase on a Pd/carbon catalyst: kinetic and mechanistic studies.” Applied Catalysis B: Environmental, 2004, 53, 101–110.
Hashimoto, Y., Uemichi, Y., Ayame, A., “Low-temperature hydrodechlorination mechanism of chlorobenzenes over platinum-supported and palladium-supported alumina catalysts.” Applied Catalysis A: General, 2005, 287, 89–97.
Jin, Z., Wang, X., Wang, S., Li, D., Lu G., “The effect of triethylamine on the hydrodechlorination of chlorophenols on Pd/C at low temperature.” Catalysis Communications, 2009, 10 2027–2030.
Kakimotoa, H., Oka, H., Miyata, Y., Yonezawa, Y., Niikawa, A., Kyudo, H., Tang, N., Toriba, A., Kizu, R., Hayakawa, H., “Homologue and isomer distribution of dioxins observed in water samples collected from Kahokugata Lagoon and inflowing rivers, Japan” Water Research, 2006, 40, 1929-1940.
Keane, M.A., Murzin, D.Y., “A kinetic treatment of the gas phase hydrodechlorination of chlorobenzene over nickel/silica: beyond conventional kinetics.” Chemical Engineering Science, 2001, 56, 3185–3195.
Kovenklioglu, S., Cao, Z., Ferrauto, R.J., Balko, E.N., “Direct catalytic hydrodechlorination of toxic organics in wastewater.” AIChE Journal, 1992, 38, 1003.
Kim, K.S., Kang, W.K., Ko, Y,H., Hong, K.H., Dong, J.I., Seo, S.S., Jeong, M.S., Lee, W.S., Shin, C.K., “Dioxins transfer from flue gas to residues in combustion gas treatment facility of industrial waste incinerators” 25th International Symposium on Halogenated Environmental Organic Pollutants and Persistent Organic Pollutants, 2005, 2276-2279.
Levenspiel, O., Chemical Reaction Engineering, 3rd ed., Wiley, New York, 1999.
Li, A., Andren, A.W., “Solubility of polychlorinated biphenyls in water/alcohol mixtures. 1. Experimental data.” Environmental Science & Technology, 1994, 28 (1), 47–52.
Lowry, G.V., Reinhard, M., “Hydrodehalogenation of 1- to 3-carbon halogenated organic compounds in water using a palladium catalyst and hydrogen gas.” Environmental Science & Technology, 1999, 33, 1905-1910.
Lu, G.N., Dang, Z., Fennell, D.E., Huang, W., Li, Z., Liu, C.Q., “Rules of thumb for assessing reductive dechlorination pathways of PCDDs in specific systems.” Journal of Hazardous Materials, 2010, 177, 1145–1149.
Lopez, E., Ordo ́n ̃ez, S., Sastre, H., Díez, F.V., “Kinetic study of the gas-phase hydrogenation of aromatic and aliphatic organochlorinated compounds using a Pd/Al2O3 catalyst.” Journal of Hazardous Materials, 2003, B97, 281.
Ma, X., Liu, Y., Liu, S., Xia, C., “Water-promoted catalytic hydrodechlorination of transformer oil-contained PCBs in liquid system under mild conditions.” Applied Catalysis B: Environmental, 2014, 144, 580- 587.
Munoz, M., de Pedro, Z.M., Casas, J.A., Rodriguez J.J., “Improved γ-alumina-supported Pd and Rh catalysts for hydrodechlorination of chlorophenols.” Applied Catalysis A: General, 2014, 2014, 78–85.
Munoz, M., Kaspereit, M., Etzold J.M.B., “Deducing kinetic constants for the hydrodechlorination of 4-chlorophenol using high adsorption capacity catalysts.” Chemical Engineering Journal, 2016, 285, 228–235.
New Zealand Government Ministry for the Environment, “New zealand inventory of dioxin emissions to air, land and water, and reservoir sources: 2011”, 2011.
Okamoto, Y., “A new dioxin decomposition process based on a hybrid density-functional calculation.” Chemical Physics Letters, 1999, 310, 355–360.
Ordo ́n ̃ez, S., Díez, F.V., Sastre, H., “Characterisation of the deactivation of platinum and palladium supported on activated carbon used as hydrodechlorination catalysts.” Applied Catalysis B: Environmental, 2001, 31, 113–122.
Ordo ́n ̃ez, S., Díez, F.V., Sastre, H., “Catalytic hydrodechlorination of chlorinated olefins over a Pd/Al2O3 catalyst: kinetics and inhibition phenomena.” Industrial & Engineering Chemistry Research, 2002, 41, 3, 505–511.
Pawelec, B., Campos-M.J.M., Cano-S, E., Navarro, R.M.,Thomas, S., Fierro, J.L.G., “Removal of PAH compounds from liquid fuels by Pd catalysts.” Environmental Science & Technology, 2005, 39, 3374–338.
Ordo ́n ̃ez, S., Beatriz P. Vivas, Fernando V. Di ́ez “Minimization of the deactivation of palladium catalysts in the hydrodechlorination of trichloroethylene in wastewaters.” Applied Catalysis B: Environmental, 2010, 95, 288–296.
Schüth, C. and Reinhard, M., “Hydrodechlorination and hydrogenation of aromatic compounds over palladium on alumina in hydrogen-saturated water.” Applied Catalysis B: Environmental, 1998, 18, 215-221.
Shindler, Y., Matatov-Meytal, Y., and Sheintuch, M., “Wet hydrodechlorination of p-chlorophenol using Pd supported on an activated carbon cloth.” Industrial & Engineering Chemistry Research, 2001, 40, 3301-3303.
Siantar, D.P., Schreier, C.G., Chou, C.S., Reinhard, M., “Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts.” Water Research, 1996, 30, 2315-2322.
Temkin, M.I., “The kinetics of some industrial heterogeneous catalytic reactions.” Advances in Catalysis, 1979, 28, 173.
Tundo, P., Perosa, A., Selva, M., Zinovyev, S.S., “A mild catalytic detoxification method for PCDDs and PCDFs.” Applied Catalysis B: Environmental, 2001. 32, L1-L7.
Ukisu, Y., Miyadera, T., “Hydrogen-transfer hydrodechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans catalyzed by supported palladium catalysts.” Applied Catalysis B: Environmental, 2003, 40, 141–149.
Ukisu, Y. and Miyadera, T., “Dechlorination of dioxins with supported palladium catalysts in 2-propanol solution.” Applied Catalysis A: General, 2004, 271, 165–170.
Urbano, F.J. and Marinas, J.M., “Hydrogenolysis of organohalogen compounds over palladium supported catalysts.” Journal of Molecular Catalysis A: Chemical, 2001, 173, 329–345.
Van den Berg, M., Birnbaum, L.S., Denison, M., Vito, M.D., Farland, W., Feeley, M., Fiedler, H., Hakansson, H., Hanberg, A., Haws, L., Rose, M., Safe, S., Schrenk, D., Tohyama, C., Tritscher, A., Tuomisto, J., Tysklind, M., Walker, N., Peterson R.E., “The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds.” Toxicological Sciences, 2006, 93(2), 223–241.
Wang, Z.Y., Huang, W.L., Fennell, D.E., Peng, P.A., "Kinetics of reductive dechlorination of 1,2,3,4-TCDD in the presence of zero-valent zinc." Chemosphere, 2008, 71, 360–368.
Xia, C., Liu, Y., Xu, J., Yu, J., Qin, W., Liang, X., “Catalytic hydrodechlorination reactivity of monochlorophenols in aqueous solutions over palladium/carbon catalyst.” Catalysis Communications, 2009, 10, 456–458.
Xia, C.H, Xu, J., Wu, W.Z., Luo, Q., Chen, J.P., Zhang,Q., Liang, X.M., “Catalytic hydrodechlorination of 2,4,4′-trichloro-2′-hydroxydiphenylether under mild conditions.” Applied Catalysis B: Environmental, 2003, 45, 281–292.
Yadav, G.D., Goel, P.K., “Experimental and theoretical analysis of selective hydrogenation of p-nitroanisole to p-anisidine over Pd/C: kinetics and catalyst deactivation.” Clean Techn Environ Policy, 2003, 4, 227–234.
Yamada, S., Kishitaa, S., Nakaib, S., Takadaa, M., Hosomia, M., “Photodechlorination of octachlorodibenzothiophene and octachlorodibenzofuran: Comparison of experimental degradation pathways with degradation pathways predicted by DFT.” Chemosphere, 2008, 73, 1005–1010.
Zhang, D., Ye, F., Xue, T., Guan, Y., Wang, Y.M. “Transfer hydrogenation of phenol on supported Pd catalysts using formic acid as an alternative hydrogen source.” Catalysis Today, 2014, 234, 133–138.
Zhang, F., Chen, J., Zhang, H., Ni, Y., Liang, X., “The study on the dechlorination of OCDD with Pd/C catalyst in ethanol–water solution under mild conditions.” Chemosphere, 2007, 68, 1716–1722.
Zhang, F., Chen, J., Zhang, H., Ni, Y., Zhang, Q., Liang, X., “Dechlorination of dioxins with Pd/C in ethanol–water solution under mild conditions.” Separation and Purification Technology, 2008, 59, 164–168.
Zheng, M.H., Bao, Z.C., Zhang, B., Xu, X.B. “PCDD/Fs in paper making from a pulp mill in China” Chemosphere, 2001, 44, 1335-1337.
日本環境省,「平成22 年度ダイオキシン類に係る環境調查結果」,2012。
日本環境廳,「ダイオキシン類の排出量の目録(排出インベントリー)」,平成17年11月(2005年)。
杜敬民、李彥芬、吳彩楣、王馨煜、黃鳳美,「特殊事業別放流水中戴奧辛含量調查計畫」,行政院環境保護署,2006。
杜敬民、李彥芬、吳彩楣、林美芬、王馨煜,「特定事業製程廢水及放流水戴奧辛調查檢測暨排放源清單建置計畫」,行政院環境保護署,2007。
蔡清蘭、吳仲平、彭瑞華、翁英明,「水體中懸浮態與溶解態之戴奧辛濃度分布探討」,2006年環境分析研討會。
蔡清蘭、陳元武、翁英明、謝季吟,「放流水中戴奧辛及戴奧辛類多氯聯苯之含量調查」,2011年環境分析化學研討會。
劉美辰,「以加氫脫氯方式降解液相OCDD/F 之效率及控制參數探討」,碩士論文,國立中央大學,2015。