跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳冠宇
Guan-Yu Chen
論文名稱: 經過渡金屬改質之磷酸鋰錳正極材料
指導教授: 諸柏仁
Peter Po-Jen Chu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 76
中文關鍵詞: 鋰離子電池正極材料磷酸鋰錳
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在於提升鋰離子電池其能量密度及輸出功率,使其更能因應行動裝置及動力型鋰離子電池高能量密度及高功率的需求。本研究使用溶膠凝膠法(Sol-gel synthesis)自行製備之磷酸鋰錳 (LiMnPO4)作為陰極材料,磷酸鋰錳(4.0 V)擁有比同系列磷酸鋰鐵(3.4 V)更高的放電電位,預期應擁有比磷酸鋰鐵更好的性能表現。但因磷酸鋰錳電子導電度及鋰離子導電度比磷酸鋰鐵更差,且在進行充放電時,錳離子因其氧化還原會受到楊-泰勒效應(Jahn-Teller effect)影響,導致電容量縮短循環壽命。為改善此缺點,本研究分別以不同比例少量的鐵離子及銪離子進行摻雜,將之取代於錳離子位置上,期望能解決材料缺點並改善電性表現。實驗結果顯示,以溶膠凝膠法合成之未摻雜磷酸鋰錳,在0.01C放電速率下電容量為 40mAh/g,在經過鐵摻雜後電容量、電池阻抗及循環壽命皆有明顯的提升;尤其是6%鐵摻雜磷酸鋰錳與未摻雜之磷酸鋰錳相比,可提升50%左右的電容量,並仍能維持4.0V的工作電位。充放電曲線並未顯示兩段式工作平台,表示鐵摻雜成功的均勻混合在磷酸鋰錳之中,沒有產生嚴重的磷酸鋰鐵分相。而銪摻雜磷酸鋰錳僅添加了0.33%,便在電容量及電池阻抗之表現有所改善;其在0.01C放電速率下,也可提升電容量至60mAh/g,僅用微量摻雜便可達到與6%鐵摻雜相同的電容量表現。


    In order to meet the demand of higher energy density and higher power for modern portable electronics and for automobile applications, efforts are devoted to the development of lithium battery with higher energy and power density. This work use LiMnPO4 as cathode material, which was synthesized by Sol-gel synthesis. LiMnPO4 has higher working potential (4.0V) than LiFePO4, and is expected to deliver better electrical performance than LiFePO4. However, due to poorer electron conductivity, slower lithium ion intercalation rate, and the fact that Jahn-Teller effect in MnPO4 octahedral affects Mn ion during charging (reduction) and discharging (oxidation) cycling, LiMnPO4 shows lower capacity and cycle life than LiFePO4. To circumvent these defects, we proposed to dope the cathode material with small amount of Fe ion and Eu ion respectively in LiMnPO4 . The results shows pristine LiMnPO4 prepared by sol-gel method has a discharging capacity of 40 mAh/g at 0.01C, but the discharging capacity, battery impedance, and cycle life are all substantially improved after doping with small amount of Fe. In the most pronounced case with 6wt% doping, an increase of 50% discharging capacity is observed compared to that in pristine sample, and maintains a high working potential at 4.0V. The absence of two-steps working plateau suggested that Fe ion was distributed homogeneously in LiMnPO4 , preclude the formation of LiFePO4 phase. In the case of Eu doping, a pronounced improvement in discharging capacity and battery impedance was found with only 0.33% Eu addition in LiMnPO4. At 0.01 C charge rate this sample yield 60 mAh/g of discharging capacity which is equal to that achieved by 6% of Fe doping.

    摘要 I Abstract II 謝誌 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1 前言 1 1-2 鋰離子電池的原理及介紹 3 1-2-1陰極材料 4 1-2-2陽極材料 6 1-3研究目的與動機 7 第二章 文獻回顧 8 2-1 磷酸鋰錳之製備方式 10 2-1-1聚酯合成法(Polyol synthesis) 10 2-1-2水熱合成法(Hydrothermal Synthesis) 12 2-1-3溶膠凝膠法(Sol-Gel Method)藉煅燒溫度改變粒徑大小 13 2-1-4兩階段合成(two-steps synthesis)製備磷酸鋰錳 15 2-2 磷酸鋰錳之碳修飾 17 2-3 磷酸鋰錳之金屬摻雜 22 2-3-1以Cu對磷酸鋰錳進行摻雜 22 2-3-2以Zn對磷酸鋰錳進行摻雜 24 2-3-3以Fe對磷酸鋰錳進行摻雜 26 第三章 實驗及原理技術 29 3-1 實驗藥品、器材與儀器設備 29 3-1-1 實驗藥品 29 3-1-2 實驗器材 30 3-1-3 實驗儀器設備 30 3-2 樣品製備 32 3-2-1磷酸鋰錳的製備 32 3-2-2 鐵摻雜之磷酸鋰錳的製備 32 3-2-3銪摻雜之磷酸鋰錳的製備 32 3-3 材料鑑定分析 33 3-3-1場發射掃描式電子顯微鏡(FE-SEM) 33 3-3-2 X-光粉體繞射儀(Powder X-ray Diffractometer, PXRD) 33 3-3-3元素分析儀(Elemental Analyzer) 34 3-4 材料電化學特性分析 36 3-4-1 電極製作 36 3-4-2 鈕扣型電池組裝 36 3-4-3 電池測試 37 3-4-4交流阻抗分析儀(AC Impedance) 38 第四章 結果與討論 40 4-1鐵摻雜磷酸鋰錳之材料分析 40 4-1-1 XRD晶體結構分析 41 4-1-2 SEM表面形態分析 43 4-1-3 EA碳含量分析 44 4-1-4 ICP金屬元素分析 44 4-2 鐵摻雜磷酸鋰錳之電化學性質分析 45 4-2-1第一圈電池效能分析 45 4-2-2不同C-rate下電池效能分析 47 4-2-3 循環壽命測試 49 4-2-4 電池交流阻抗分析 50 4-3 銪摻雜磷酸鋰錳之材料與電化學性質分析 53 4-3-1 XRD晶體結構分析 53 4-3-2 SEM表面型態分析 55 4-3-3 不同C-rate下電池效能分析 56 4-3-4電池交流阻抗分析 57 第五章 結論與未來展望 58 參考文獻 60

    1. J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414: p. 359-367.
    2. A. Hirano, R. Kanno, Y. Kawamoto, Y. Takeda, K. Yamaura, M. Takano, K. Ohyama, M. Ohashi, and Y. Yamaguchi, Relationship between non-stoichiometry and physical properties in LiNiO2. Solid State Ionics, 1995. 78(1–2): p. 123-131.
    3. A. Yamada and M. Tanaka, Jahn-Teller structural phase transition around 280K in LiMn2O4. Materials Research Bulletin, 1995. 30(6): p. 715-721.
    4. F. Zhou, K. Kang, T. Maxisch, G. Ceder, and D. Morgan, The electronic structure and band gap of LiFePO4 and LiMnPO4. Solid State Communications, 2004. 132(3–4): p. 181-186.
    5. 費定國, 鋰離子電池在電動車市場之展望. 工業材料雜誌, 2006. 229: p. 141-146.
    6. M. Gozu, K. Świerczek, and J. Molenda, Structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1−xO2 oxides prepared by a soft chemistry method. Journal of Power Sources, 2009. 194(1): p. 38-44.
    7. X.L. Pan, C.Y. Xu, D. Hong, H.T. Fang, and L. Zhen, Hydrothermal synthesis of well-dispersed LiMnPO4 plates for lithium ion batteries cathode. Electrochimica Acta, 2013. 87: p. 303-308.
    8. D. Wang, H. Buqa, M. Crouzet, G. Deghenghi, T. Drezen, I. Exnar, N.H. Kwon, J.H. Miners, L. Poletto, and M. Grätzel, High-performance, nano-structured LiMnPO4 synthesized via a polyol method. Journal of Power Sources, 2009. 189(1): p. 624-628.
    9. T. Drezen, N.H. Kwon, P. Bowen, I. Teerlinck, M. Isono, and I. Exnar, Effect of particle size on LiMnPO4 cathodes. Journal of Power Sources, 2007. 174(2): p. 949-953.
    10. M. Pivko, M. Bele, E. Tchernychova, N.Z. Logar, R. Dominko, and M. Gaberscek, Synthesis of Nanometric LiMnPO4via a Two-Step Technique. Chemistry of Materials, 2012. 24(6): p. 1041-1047.
    11. F. Wang, J. Yang, P. Gao, Y. NuLi, and J. Wang, Morphology regulation and carbon coating of LiMnPO4 cathode material for enhanced electrochemical performance. Journal of Power Sources, 2011. 196(23): p. 10258-10262.
    12. 聶平, 申來法, 陳琳, 蘇曉飛, 張校剛, and 李洪森, Sol-Gel Synthesis and Electrochemical performance of Porous LiMnPO4/MWCNT composites. 物理化學學報, 2011. 27(9): p. 2123-2128.
    13. M.K. Yuta MIZUNO, Hirokazu MUNAKATA and Kuyoshi KANAMURA, Effectt of carbon source on electrochemical performance of carbon coated LiMnPO4 cathode. Journal of Ceramic Society of Japan, 2009. 117(11): p. 1225-1228.
    14. J. Ni and L. Gao, Effect of copper doping on LiMnPO4 prepared via hydrothermal route. Journal of Power Sources, 2011. 196(15): p. 6498-6501.
    15. H. Fang, H. Yi, C. Hu, B. Yang, Y. Yao, W. Ma, and Y. Dai, Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries. Electrochimica Acta, 2012. 71: p. 266-269.
    16. L. Damen, F. De Giorgio, S. Monaco, F. Veronesi, and M. Mastragostino, Synthesis and characterization of carbon-coated LiMnPO4 and LiMn1−xFexPO4 (x=0.2, 0.3) materials for lithium-ion batteries. Journal of Power Sources, 2012. 218: p. 250-253.
    17. 朱晏誼, Preparation and Property study of Cathode Material of Lithium-ion Battery - LiFePO4. 國立清華大學材料科學工程學系碩士論文, 2006.
    18. 廖珮芸, Phase Transition, Oxidation State and Electrochemical Characterization of LiNi0.75-x-yMgyCo0.25MnxO2 Cathode. 國立清華大學材料科學與工程學系博士論文, 2007.
    19. Y. Wang, Y. Yang, Y. Yang, and H. Shao, Enhanced electrochemical performance of unique morphological cathode material prepared by solvothermal method. Solid State Communications, 2010. 150(1-2): p. 81-85.
    20. T.H. Kim, H.S. Park, M.H. Lee, S.Y. Lee, and H.K. Song, Restricted growth of LiMnPO4 nanoparticles evolved from a precursor seed. Journal of Power Sources, 2012. 210: p. 1-6.
    21. G. Yang, H. Ni, H. Liu, P. Gao, H. Ji, S. Roy, J. Pinto, and X. Jiang, The doping effect on the crystal structure and electrochemical properties of LiMnxM1−xPO4 (M=Mg, V, Fe, Co, Gd). Journal of Power Sources, 2011. 196(10): p. 4747-4755.
    22. J.W. Lee, M.S. Park, B. Anass, J.H. Park, M.S. Paik, and S.G. Doo, Electrochemical lithiation and delithiation of LiMnPO4: Effect of cation substitution. Electrochimica Acta, 2010. 55(13): p. 4162-4169.
    23. C. Hu, H. Yi, H. Fang, B. Yang, Y. Yao, W. Ma, and Y. Dai, Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg. Electrochemistry Communications, 2010. 12(12): p. 1784-1787.

    QR CODE
    :::