| 研究生: |
黃泓睿 Hung-Jui Huang |
|---|---|
| 論文名稱: |
機器學習應用於氫化非晶矽(a-Si:H)鈍化膜之即時電漿化學氣相沉積製程監控 Machine learning of In-situ plasma monitoring in PECVD deposited amorphous (a-Si:H) passivation film |
| 指導教授: | 傅尹坤 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 光機電工程研究所 Graduate Institute of Opto-mechatronics Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 電漿輔助化學氣相沉積 、氫化非晶矽鈍化膜 、主成分分析 、機器學習 、史密斯圖 |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究利用自製電漿輔助化學氣相沉積(PECVD)引入矽甲烷(SiH4)、氫氣(H2)、氬氣(Ar)製備超薄氫化非晶矽本質鈍化層(< 10 nm)於矽基板上,利用光放射光譜端點檢測透過電漿診斷即時提供電漿變化趨勢大幅減少製程測試實驗,而縮短製程開發成本。
根據研究氫稀釋比(R= H2 / SiH4)對沉積a-Si:H,研究過程中,利用光放射光譜監測電漿全普光譜量測,其中SiH*強度代表機器學習中的主成分分析法(PCA)結合工業4.0趨勢,使得製程更加穩定。即時電漿時序光譜發現電漿解離瞬間(暫態)之SiH*強度與RF的輸入電壓及反射電壓間的關係,同時由Z-Scan看出腔體阻抗質和相位,並搭配光放射光譜儀與四極柱質譜儀做即時性的電漿診斷分析,找出電漿組態對於阻抗匹配間的關係,藉由此結論,研究出改善薄膜品質的主要關鍵,進而更有效率的縮短製程時間。其中量測薄膜性質如:FTIR(氫含量)、lifetime(載子生命週期)等,並在案例研究中得到驗證。
研究結果顯示,當主成分分析法(PCA)結果當Health Value超過0.2,載子生命週期可超過600us或是更高。再由史密斯圓的匹配過程,當暫態的時間越短約莫1-2秒,也可獲得更好的載子生命週期更高達750us,上述研究及分析結果可獲得適當之製程參數和阻抗匹配條件於本PECVD系統中。
The use of self-made plasma-assisted chemical vapor deposition (PECVD) to introduce indium methane (SiH4), hydrogen (H2), and argon (Ar) to produce an ultra-thin hydrogenated amorphous germanium passivation layer (< 10 nm) on a germanium substrate, The use of optical emission spectroscopic end-point detection to provide immediate plasma changes through plasma diagnostics drastically reduces process testing experiments and reduces process development costs.
According to the study of hydrogen dilution ratio (R=H2/SiH4), a-Si:H was deposited. During the study, the plasma spectroscopic measurement was performed by light emission spectroscopy, and the SiH* intensity represented the principal component analysis in machine learning ( PCA) combined with the trend of industry 4.0, making the process more stable. The instantaneous plasma time-series spectrum reveals the relationship between the SiH* intensity of the plasma dissociation instant (transient) and the RF input voltage and reflected voltage. At the same time, the Z-Scan sees the cavity impedance and phase, and is matched with the light emission spectrometer. The quadrupole mass spectrometer performs an immediate plasma diagnostic analysis to find out the relationship between the plasma configuration and the impedance matching. From this conclusion, the main key to improve the film quality is studied, and the process time is shortened more efficiently. Among them, film properties such as FTIR (hydrogen content) and lifetime (carrier life cycle) were measured and verified in case studies. The results of the study show that when the PCA results are greater than 0.2, the carrier lifetime can exceed 600 us or more. By Smith's matching process, when the transient time is shorter about 1-2 seconds, a better carrier lifetime can be obtained up to 750us. The above research and analysis results can obtain appropriate process parameters and impedance matching conditions in this PECVD system.
[1] 黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2] National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
[3] H. Sakata and M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, IEEE 4th World Conference, 2006.
[4] ITRPV Edition 2016_Revision 1,2016,http://www.itrpv.net/Home/.
[5] Swanson, “A vision for crystalline silicon photovoltaics”, Progress in Photovoltaics, Vol. 14, pp. 443-453, 2006.
[6] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11 Deposition, 2001.
[7] J. Venables, “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol 47, pp. 399, 1984.
[8] Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[9] 羅正忠,半導體製程技術導論,歐亞出版社,2006 年。
[10] H. F. Sterling, R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electron, Vol 8, pp. 653, 1965.
[11] Triska, A., D. Dennison, and H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 392, 1975.
[12] 陳治明,非晶半導體材料與器件,科學出版社,民國八十年。
[13] John Robertson. “Growth mechanism of hydrogenated amorphous silicon”, Journal of Non-Crystalline Solids, Vol 266-269, pp. 79–83, 2000.
[14] A. Matsuda, "Microcrystalline silicon. Growth and device application" , Journal of Non-Crystalline Solids, Vol. 338, pp. 1-12, Jun 15 , 2004
[15] A. Matsuda, et al. “Solar Energy & Solar Cells”, 2003,78,3
[16] Akihisa Matsuda, “Thin-Film Silicon — Growth Process and Solar Cell Application”, J.J.A.P., Vol 43, pp. 7909–7920, 2004.
[17] A. Triska, D. Dennison, and H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 392, 1975.
[18] Yao Ruohe, et al. “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997.
[19] 吳培慎,「利用PECVD製備超薄本質氫化非晶矽(a-Si:H)薄膜之優質鈍化成效研究」,國立中央大學,碩士論文,2015年。
[20] 張濟忠,現代薄膜技術,冶金工業出版社,2009年。
[21] M. Wakaki, et al.著,周海憲、程云芳譯,光學材料手冊,化學工業出版社,2010年。
[22] Burrows, M. Z., et al., “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, Journal of Vacuum Science & Technology A,Vol. 26(4), pp. 683-687, 2008.
[23] J. Sritharathikhun, et al., “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46(6A), pp. 3296-3300, 2007.
[24] H. Fujiwara and M. Kondo, “Impact of epitaxial growth at the hetero interface of a-Si:H/c-Si solar cells”, Applied Physics Letters, Vol. 90, pp. 013503-013506, 2007.
[25] F. Zignani, et al., “Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate”, Thin Solid Films,Vol. 451–452, pp. 350–354, 2004.Vol. 451–452, pp. 350–354, 2004.
[26] U. Kroll, J. Meier,A. Shah, S. Mikhailov, and J, Weber, J. Appl. Phys. 80,4971 , 1996.
[27] N. H. Nickel: Hydrogen in semiconductor II, 61 , 1999.
[28] M. S. Jeon and K. Kamisako “Hydrogenated Amorphous Silicon Thin Films as Passivation Layers Deposited by Microwave Remote-PECVD for Heterojunction Solar Cells”, transactions on electrical and electronic materials, vol. 10, no. 3, june 25, 2009.
[29] M.H. Brodsky, Q. Li, B.C Pan, and Y. Yoon, Phys.1 Rev. B, 57 , 2253 , 1998.
[30] Taguchi, M., et al., "24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer." Ieee Journal of Photovoltaics 4(1): 96-99, 2014.
[31] Jia Ge, et al., “Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy”, JOURNAL OF APPLIED PHYSICS 113, 234310 , 2013.
[32] D. L. Meier, et al., “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
[33] T. S. Horanyi, et al, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol. 63, pp. 306-311, 1993.
[34] S. K. Ram, et al., “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Phys. Status Solidi©, Vol 7, No. 3–4, pp. 553–556, 2010.
[35] S. Y. Lien et al., “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol 357, pp.161–164, 2011.
[36] H. L. Hsiao, et al., “Study on low temperature facetting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Applied Surface Science, Vol 142, pp. 316–321, 1999
[37] M. Takai, et al., “Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma”, Appl. Phys. Lett., Vol 77, pp. 18, 2000.
[38] M. Jeon , et al., “Hydrogenated amorphous silicon film as intrinsic passivation layer deposited at various temperatures using RF remote-PECVD technique”, Current Applied Physics 10 S237–S240 , 2010.
[39] 陳建勳,「非晶矽繞射光學元件的製作與分析」,國立中央大學物理研究所碩士論文,民國九十四年。
[40] P. Klement, et al., "Correlation between optical emission spectroscopy of hydrogen/germane plasma and the Raman crystallinity factor of germanium layers," Appl. Phys. Lett., Vol. 102 (2013).
[41] P. Tristant, et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias”, Thin Solid Films, Vol. 390, pp. 51–58, 2001.
[42] 劉憲明,「寬能隙本質氫化非晶氧化矽(a-SiOx:H)薄膜光電特性與鈍化品質之關聯探討」,國立中央大學,碩士論文,民國一百零三年。
[43] 樊洁平,劉惠民,田強,「光吸收介質的吸收係數與介電函數虛部的關係,大學物理,28卷,3期,民國九十八年。
[44] 林明獻,太陽能電池技術入門,全華科技圖書股份有限公司印行 2008年。
[45] https://zh.wikipedia.org/wiki/主成分分析
[46] S. Guha, et al. , “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol 61, pp. 1444, 1992.
[47] 曾靜琳,「以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響」,國立中央大學,碩士論文,民國一百零六年。
[48] Shaw P.J.A. (2003) Multivariate statistics for the Environmental Sciences, Hodder-Arnold. ISBN 978-0-340-80763-7.
[49] H. Norbert Nickel: Hydrogen in semiconductor II, 61, 1999.
[50] S. Guha, et al. , “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol 61, pp. 1444, 1992.
[51] D. Sudhir, M. Bandyopadhyay, W. Kraus, et al, Online tuning of impedancematching circuit for long pulse inductively coupled plasma sourceoperation–an alternate approach, Rev. Sci. Instrum. 85 (2014) 013510.
[52] 余明倫,「電漿診斷系統輔助化學氣象沉積之鈍化層薄膜製程區間研究」,國立中央大學,碩士論文,民國一百零六年。
[53] H. Abdi., & Williams, L.J. Principal component analysis.. Wiley Interdisciplinary Reviews: Computational Statistics. 2010, 2: 433–459.
[54] W. Kraus, U. Fantz, B. Heinemann, et al., Solid state generator for powerfulradio frequency ion sources in neutral beam injection systems, Fusion Eng.Des. 91 (2015) 16–20