| 研究生: |
駱俐伶 Li-Ling Lo |
|---|---|
| 論文名稱: |
多用戶多輸入多輸出之下行正交分頻多工毫米波系統之子載波配置 Subcarrier Allocation Schemes for Downlink Multiuser MIMO-OFDM mmWave Systems |
| 指導教授: |
陳永芳
Yung-Fang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系 Department of Communication Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | 多輸入多輸出 、正交分頻多工 、毫米波 、混合預編碼 、資源配置 、資料流配置 |
| 外文關鍵詞: | Multiple-Input and Multiple-Output (MIMO), Orthogonal Frequency-Division Multiplexing (OFDM), Millimeter Wave (mmWave), hybrid beamforming, resource allocation, data stream allocation |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現在通訊系統發展中,多輸入多輸出及正交分頻多工是很重要的技術與趨勢,加上5G時代的來臨,毫米波系統的使用及設計也逐漸受到重視,因此,本篇論文將多輸入多輸出技術及正交分頻多工技術結合至毫米波系統,並設定為下行通道多使用者的環境來作探討。
本篇論文之研究方法依據每個使用者在每個子通道做的奇異值分解之結果,在眾多使用者中優先挑選出通道條件較佳之使用者作訊息傳輸,即為子載波之配置,再經由不同方法分配每個使用者在每個子通道中所能傳送的資料流數量。論文提出針對子載波配置及資料流配置分別提出兩個方法:子載波配置的第一個方法為依據通道條件將子載波分配給通道較好的使用者,第二個方法則是加上使用者所能獲得之最多子載波之限制;資料流配置的第一個方法與前述方法相同,均根據通道條件做分配,第二個方法以第一個方法作為基礎,再經過論文所提出之疊代法以增加其頻譜效率。
論文最後提供了各個方法之配對比較結果圖,由實驗結果可得知,在不選滿使用者的情況下,做子載波配置且加上資料流配置的頻譜效率表現會好過於選滿使用者後做子載波配置且一個使用者僅使用一個資料流的表現;另外,模擬圖呈現使用本論文所提出之疊代法來調整原資料流配置的結果,可增加其總頻譜效率。
In the recent development of communication system, MIMO and OFDM are very important technology and also the trend in future. For the age of 5G communication is coming, the design of millimeter wave systems gradually received the attention. Therefore, in this thesis, we combine the MIMO and OFDM technology to mmWave system and assume the multiuser downlink environment.
The research method of this paper to allocate subcarriers and select users is according to the results of singular value decomposition (SVD) of the channels for each users at each subcarrier. At each subcarrier, the user who has the better channel condition has the right to transmit the signals. Then we allocate the data streams for users by using different schemes. For subcarrier allocation and data stream allocation, this thesis provides two schemes, respectively. The first scheme of subcarrier allocation is that select the users who have the higher singular values at each subcarrier and the second scheme is also based on the channel SVD but add the constraint of number of allocated subcarriers for each user. For the data stream allocation schemes, we assign more data streams to users who have the better channel condition (scheme1) then the iterative scheme (scheme2) is to reallocate the data streams for different users and calculate the data rate after reallocation. If the reallocated pairs can improve the performance, we save the reallocation results.
As the experimental results, the thesis proposed that the spectral efficiency of the scheme that each user transmits different number of data streams is higher than the scheme that each user transmits one data stream. Furthermore, the simulation result also presents that the proposed iterative data stream allocation scheme can improve the total spectral efficiency.
[1] R. W. Heath Jr., N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. Sayeed, “An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems.” IEEE J. Sel. Topics in Sig. Process., vol 10, no. 3, pp. 1-18, 2016.
[2] Z. Pi and F. Khan, “An Introduction to Millimeter-Wave Mobile Broadband Systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 101–107, June 2011.
[3] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Process. Mag., vol. 30, no. 1, pp. 40-60, Jan. 2013.
[4] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, ppl 186-195, Feb. 2014.
[5] X. Zhang, A. F. Molisch, and S.-Y. Kung, “Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection,” IEEE Trans. Signal Process., vol. 53, no. 11, pp. 4091–4103, Nov. 2005
[6] O. EI Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially Sparse Precoding in Millimeter Wave MIMO Systems,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, March 2014.
[7] F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 501–513, April 2016.
[8] F. Sohrabi and W. Yu, “Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1432–1443, Jul. 2017
[9] A. Li and C. Masouros, “Hybrid precoding and combining design for millimeter-wave multi-user MIMO based on SVD,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–6.
[10] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multicarrier OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Select. Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999.
[11] Chen, Y.-F., Chen, J.-W.: ‘A fast subcarrier, bit, and power allocation algorithm for multiuser OFDM-based systems’, IEEE Trans. Veh. Tech., 2008, 57, (2), pp. 873–881
[12] W. Rhee and J. M. Cioffi, “Increasing in capacity of multiuser OFDM system using dynamic subchannel allocation,” in Proc. IEEE Veh. Technol. Conf., Tokyo, Japan, vol. 2, May 2000, pp. 1085-1089
[13] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Select. Areas Commun., vol. 21, no. 2, pp. 171-178, Feb. 2003.
[14] W.-C. Pao and Y.-F. Chen, “Reduced complexity subcarrier allocation schemes for DFT-precoded OFDMA uplink systems,” IEEE Trans. Wireless Commun., vol. 9, no. 9, pp. 2701–2706, Sep. 2010.
[15] J. Jiang and D. Kong, “Joint User Scheduling and MU-MIMO Hybrid Beamforming Algorithm for mmWave FDMA Massive MIMO System”, International Journal of Antennas and Propagation, Article ID 4341068, 2016.
[16] T. E. Bogale, L. B. Le, and A. Haghighat, “User scheduling for massive MIMO OFDMA systems with hybrid analog-digital beamforming,” in Proc. IEEE Int. Conf. Commun., London, U.K., 2015, pp. 1757–1762.
[17] I. Ahmed, H. Khammari, and A. Shahid, “Resource allocation for transmit hybrid beamforming in decoupled millimeter wave multiuserMIMO downlink,” IEEE Access, vol. 5, pp. 170–182, 2017.
[18] V.N. Ha, D.H.N. Nguyen and J.-F. Frigon, "Subchannel allocation and hybrid precoding in mmWave ofdma systems", IEEE Trans. Wireless Commun., 2017.
[19] M. Benmimoune, E. Driouch, W. Ajib and D. Massicotte, "Joint transmit antenna selection and user scheduling for massive MIMO systems", Proc. IEEE Wireless Commun. Netw. Conf., pp. 381-386, Mar. 2015.
[20] A. Forenza, D. Love and R. W. Heath, "Simplified spatial correlation models for clustered MIMO channels with different array configurations", IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1924-1934, 2007.
[21] C. Balanis, Antenna Theory, Wiley, 1997.
[22] Z. Pi, "Optimal transmitter beamforming with per-antenna power constraints", IEEE Int. Conf. Commun. (ICC), pp. 3779-3784, 2012.
[23] L. Zhou and Y. Ohashi, “Hybrid precoding with data stream adaptation for high throughput mmWave MIMO systems,” in proc. IEEE Wireless Commun. and Networking Conf., Doha, 2016, pp. 1-6.