| 研究生: |
張瑀峻 Yu-chun Chang |
|---|---|
| 論文名稱: |
澎湖海域潮流之數值模擬及其發電潛能評估 Development of a High Resolution 3-D circulation Model for the Assessment of Tidal Current Energy in Peng-Hu |
| 指導教授: |
錢樺
Hwa Chien |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 水文與海洋科學研究所 Graduate Instittue of Hydrological and Oceanic Sciences |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 潮流發電 、澎湖海域 、數值模式 |
| 外文關鍵詞: | numerical model, Peng-Hu, tidal current energy |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
潮流在淺海陸棚區是困難度低、穩定性高、可完全預測的海洋能源。
海流發電機組的設置可能改變當地流場的流速或流向,從而影響營養鹽類、
浮游生物、稚仔魚及魚卵的分佈與通量等,這些變異可能改變原本脆弱的
浮游生物群聚組成與結構,進而影響整體海洋生態系統。本研究以澎湖海
域為例,建立高解析精度潮流數值模式進行潮流發電潛能評估與探討發電
機組放置對當地流場造成的影響。
本研究建構之高解析精度潮流數值模式推算發電潛式結果顯示,吼門
水道與西嶼外垵西側海域最具發電潛能。本研究以改變摩擦係數模擬不同
裝置容量之潮流渦輪機,實驗結果顯示10 倍、100 倍和1000 倍之摩擦係數
約等同於設置10kW、20kW 和30kW 之理想化潮流發電機組之效果。據此
將探討兩個部分,第一個部份為不同裝置容量之潮流發電機組置放對強流
區造成的改變,另一個部份是以模擬示蹤劑佈放實驗探討水體交換效率的
變化。
強流區改變部份,於跨海大橋吼門水道中心置放發電機組後,發現於
其北側產生另一強流區,南側第二渠道支流流速也增加,且隨發電機截取
能量加大而增加。西嶼外垵西側海域案例中,強流區座落位置往西外移,
且亦隨發電瓦數增加而愈加顯著。
水體交換效率變化部份,根據示蹤劑模擬之結果,若以30kW 之理想
化潮流發電機組為例,渦輪機設置前後示蹤劑傳輸擴散範圍減少了約10
km2,較未設置前約減少16%左右。再計算各濃度傳輸擴散面積所佔總傳輸
擴散面積百分比,稀釋後的示蹤劑其低濃度(10%以下) 在置放發電機後傳
輸擴散面積增加14.5%,高濃度(20%以上)則減少6.5%,可知內海水質傳輸
擴散範圍縮減,示蹤劑受到底部渦輪機影響,高濃度的示蹤劑滯留當地,
降低澎湖內海的水體交換效率。西嶼外垵西側海域的實驗中,渦輪機置放
對當地水質交換的速率與比例皆無顯著影響。
Tidal power is a clear and constant renewable ocean energy that can be predicted
accurately. With the rapid development of shallow water turbine technologies in the
commercial market, the uncertainties of the investment in terms of cost-benefit assessment
can be reduced. The tidal current energy conversion is considered as one of the favorable
alternative in Taiwan’s energy policy. One of the crucial issues is the impacts that may be
brought by the installation of turbines. As the kinetic energy is uptaken, the follow field will
change and hence the transportation of nutrients, plankton and lava will altered, which leads
to the direct impact of ocean ecosystem.
The aim of present study is to setup a high-resolution 3-D ocean circulation model that
is capable to simulate the tidal current at curvy coastline in Peng-Hu Archipelago. The
numerical model system is first validated using field measured datasets. From the simulation
results, it is found that the Hou-Men Channel and western Si-Yu sea area have the greatest
energy potential in Peng-Hu. It is worthy to noted that the processes of tidal dynamic in the
inner-bay of Peng-Hu Archipelago behave similar to a lagoon with two narrow open ends,
where the effects of phase lags of major constituents is limited. The almost synchronized tidal
current flow into the inner-bay from the north and south ends can be identified during flood
tide and vice versa. Concerning to the approaches to simulate the effects of the installation of
tidal energy conversion units, this study adopted the method of modifying the bottom drag
coefficient to simulate the flow field change incurred by installing difference turbine of
various capacities.
Furthmore, the discussions on the change of current fields in the vicinity of installations
as well as the change of water body exchange rate in the inner-bay with respect to various
turbine capacities are carried out.
In the Hou-Men Channel case, the location of strong current stream will move northward due
to the installation of turbines, and the velocity increases in the south channel. In western
Si-Yu sea area, the location of strong current stream moves westward. From the results, both
Hou-Men Channel and western Si-Yu sea area entertained more severe impacts of the shifting
of strong stream locations as the capacity of turbine increased.
This study also compares the variation of the rates of water body exchanged at different
sites through the tracer simulated experiments. For example, the setup a 30kW idealized
turbine in Hou-Men Channel will inccur, the tracer spearding area reduced by 16% compared
to original case. In western Si-Yu sea area, there seems no significant altering of tracer
spreading with respect to different capcities of turbine.
[1] 鄭雅堂,「再生能源發電」,物理雙月刊,廿九卷三期,673-687 頁,2007
年6 月。
[2] 徐泊樺,顏志偉,「淺談我國海洋能源之開發前景」,物理雙月刊,廿
九卷三期,718-726 頁,2007 年6 月。
[3] 經濟部能源局,「2007 年能源科技研究發展白皮書」, 2007 年。
[4] 經濟部能源局,「2010 年能源產業技術白皮書」, 2010 年。
[5] 郭金泉,「風力發電是澎湖的願景」,Taiwan News,175 期,2005 年。
[6] 邱銘達,錢樺,李汴軍,高家俊,「應用POM 推算颱風暴潮之研究」,
海洋工程學刊,八卷一期,43-65 頁,2008 年6 月。
[7] 財團法人台灣漁業技術顧問社,「澎湖縣沿岸海域漁業利用規劃報告」,
澎湖縣政府,1992 年12 月。
[8] Blumberg, A. F. and G. L. Mellor, “A description of a three dimensional
coastal ocean circulation model”, Three-Dimensional Coastal Ocean
Models, Vol. 4, pp. 1-16, 1987.
[9] Mellor G. L., “Users guide for a three-dimensional, primitive equation,
numerical ocean model”, 2004, Http://www.aos.princeton.edu/WWWPUB
LIC/htdocs.pom/
[10] Hu, C.-K., C.-T. Chiu, S.-H. Chen, J.-Y. Kuo, S. Jan, and Y.-H. Tseng,
“Numerical simulation of barotropic tides around Taiwan.”, Terrestrial
Atmospheric and Oceanic Sciences, Vol. 21, pp. 71-84, 2008.
68
[11] Stiven, T., S. J. Couch, and A. S. Iyer, “Assessing the impact of ADCP
resolution and sampling rate on tidal current energy project economics”,
OCEANS, IEEE, pp. 1-10, Santander, Spain, June 2011.
[12] Mellor, G. L., and Yamada, “Development of a turbulence closure model
for geophyscial fluid problems”, Rev. Geophys. Spaces Phys., Vol. 20, pp.
851-875, 1982.
[13] Egbert, G. D., and S. Y. Erofeeva, “Efficient Inverse Modeling of
Barotropic Ocean Tides.”, J. Atmos. Oceanic Technol., Vol. 19, pp. 183-204,
2002.
[14] Blanchfield, J., C. Garrett, P. Wild, and A. Rowe, “The extractable power
from a channel linking a bay to the open ocean.”, Proc Inst Mech Eng, Vol.
222, pp. 289-297, 2008.
[15] Blanchfield, J., C. Garrett, and A. Rowe, “Tidal stream power resource
assessment for Masset Sound, Haida Gwaii.”, Proc Inst Mech Eng, Vol. 222,
pp. 485-492, 2008.
[16] Karsten, R. H., J. M. McMillian, M. J. Lickley, “Assessment of tidal
current energy in Minas Passage, Bay of Fundy.”, Proc IMechE, Vol.222,
pp.493-507, 2008.
[17] Garrett, C., and P. Cummins, “Generating power from tidal currents.”, J
Waterway Port Coast Ocean Eng, Vol.130, pp.114-118, 2004.
[18] Hasegawa, D., J. Sheng, D. A. Greenberg and K. R. Thompson, “Far-field
effects of tidal energy extraction in the Minas Passage on tidal circulation
in the Bay of Fundy and Gulf of Maine using a nested-grid coastal
circulation model.”, Ocean Dynamics, Vol. 61, pp. 1845-1868, 2011.
[19] Foreman, M. G.G., R. F. Henry, R. A. Walters, and V. A. Ballantyne, “A
finite element model for tides and resonance along the north coast of
69
British Columbia.”, J. Geophys. Res., Vol. 98, pp. 2509-2532, 1993.
[20] Hagerman, G., B. Polagye, R. Bedard, and M. Previsic, “Methodology for
Estimating Tidal Current Energy Resources and Power Production by Tidal
In-Stream Energy Conversion (TISEC) Devices”, EPRI Report, 2006.
[21] IEA-OES, “Review and analysis of ocean energy systems development and
supporting policies”, International Energy Agency, IEA, 2007.
[22] IEA-OES, “Annual Report on Ocean Energy- Opportunity, Present Status
and Challenges”, International Energy Agency, IEA, 2008.
[23] Niwa, Y. and T. Hibiya, “Three-dimensional numerical simulation of M2
internal tides in the East China Sea.”, J. Geophys. Res., Vol. 109, 2004.
[24] Ledwell, J. R., A. J. Watson and C. S. Law, “Mixing of a tracer released in
the pycnocline”, J. Geophys. Res., Vol. 103, 1998.
[25] Townsend, A. A., “The diffusion of heat spots in isotropic turbulence”, Proc.
R. Soc. London, Vol. 209, 1951.
[26]Geyer, W. R., and R. P. Signell, “A reassessment of the role of tidal
dispersion in estuaries and bays”, Estuaries, Vol. 15, 1992.
[27]Smagorinsky, J., S. Manabe, and J. L. Holloway, “Numerical results from a
nine-level general circulation model of the atmosphere.”, Monthly Weather
Review, Vol. 93, pp. 727-768, 1965.
[28]Kjerve, B. and K. E. Magill, “Geomophic and hydrodynamic characteristics
of shallow coastal lagoons.”, Marine Gelology, Vol. 88, pp. 187-199, 1989.