| 研究生: |
杜郁萱 Yu-Hsuan Tu |
|---|---|
| 論文名稱: |
以生物資訊分析與實驗驗證探討大腸桿菌蛋白質體晶片找出的乳鐵胜肽B胞內目標蛋白 Validations and Bioinformatics Analyses ofLactoferricin B Intracellular Targets Identified by Escherichia coli Proteome Chips |
| 指導教授: |
陳健生
Chien-Sheng Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 系統生物與生物資訊研究所 Graduate Institute of Systems Biology and Bioinformatics |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 抗菌肽 、蛋白質體晶片 、乳鐵胜肽B 、胞內目標蛋白 |
| 外文關鍵詞: | antimicrobial peptides, intracellular targets, lactoferricin B, proteome chips |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
乳鐵胜肽B是一種廣受矚目的抗菌肽。許多研究指出乳鐵胜肽B可藉由影響細菌的胞內活動達到抑制細菌的效果,然而,卻不知道抗菌肽的胞內目標蛋白為何。因此,我們使用一種高通量方式─大腸桿菌蛋白質體晶片試圖找出乳鐵胜肽B的胞內目標蛋白。首先,將乳鐵胜肽B和大腸桿菌蛋白質體晶片進行交互作用,並且做正規化及基因本體分析。從基因本體分析結果發現,利用晶片找出的可能目標蛋白和代謝的過程是很有關係的。接著,我們利用螢光偏極化實驗來驗證乳鐵胜肽B和晶片實驗找出的可能目標蛋白之間的交互作用。從螢光偏極化實驗中,十六個蛋白質被找出並且透過大腸桿菌交互作用資料庫發現這些蛋白質大部分都和檸檬酸循環有關。另外,我們還使用基因剔除實驗為螢光偏極化的結果做進一步驗證。其結果顯示磷酸烯醇式丙酮酸羧化酶為乳鐵胜肽B的目標。因此,抑制細菌的機制之一可能和丙酮酸代謝有關係。所以,我們利用丙酮酸實驗以活體證實乳鐵胜肽B和大腸桿菌中丙酮酸含量的關係。從結果可以發現當大腸桿菌在有乳鐵胜肽B的環境生長時,有異於正常情況的丙酮酸含量;也就是說,乳鐵胜肽B造成大腸桿菌體內有丙酮酸堆積的現象。此研究成功利用大腸桿菌蛋白質體晶片找出乳鐵胜肽B於細菌內部的目標蛋白,並藉由結合實驗驗證及生物資訊的方法找出其抑制細菌的可能機制。
Lactoferricin B (LfcinB) is a well-known antimicrobial peptide (AMP). Several studies have indicated that it can inhibit bacteria by affecting intracellular activities, but the intracellular targets of this AMP have not been identified. Therefore, we used E. coli proteome chips to identify the intracellular target proteins of LfcinB in a high-throughput manner. We probed LfcinB with E. coli proteome chips and further conducted normalization and Gene Ontology (GO) analyses. The results of the GO analyses showed that the identified proteins were associated with metabolic processes. Moreover, we
validated the interactions between LfcinB and chip assay-identified proteins with fluorescence polarization (FP) assays. Sixteen proteins were identified, and an E. coli
interaction database (EcID) analysis revealed that the majority of the proteins that interact with these 16 proteins affected the tricarboxylic acid (TCA) cycle. Knockout assays were conducted to further validate the FP assay results. These results showed that phosphoenolpyruvate carboxylase was a target of LfcinB, indicating that one of its mechanisms of action may be associated with pyruvate metabolism. Thus, we used pyruvate assays to conduct an in vivo validation of the relationship between LfcinB and pyruvate level in E. coli. These results showed that E. coli exposed to LfcinB had abnormal pyruvate amounts, indicating that LfcinB caused an accumulation of pyruvate. In conclusion, this study successfully revealed the intracellular targets and the possible mechanism of LfcinB using an E. coli proteome chip approach with the combination of validations and
bioinformatics analyses.
1. Ganz T, "Defensins: antimicrobial peptides of innate immunity", Nat Rev Immunol, 3, 710-720, (2003)
2. Brogden KA, "Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?", Nat Rev Microbiol, 3, 238-250, (2005)
3. Cudic M, Otvos L, "Intracellular targets of antibacterial peptides", Current Drug Targets, 3, 101-106, (2002)
4. Hancock REW, Sahl HG, "Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies", Nature Biotechnology, 24, 1551-1557, (2006)
5. Yeaman MR, Yount NY, "Mechanisms of antimicrobial peptide action and resistance", Pharmacol Rev, 55, 27-55, (2003)
6. Park CB, Kim HS, Kim SC, "Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions", Biochem Biophys Res Commun, 244, 253-257, (1998)
7. Gudmundsson GH, Magnusson KP, Chowdhary BP, Johansson M, Andersson L, et al., "Structure of the gene for porcine peptide antibiotic PR-39, a cathelin gene family member: comparative mapping of the locus for the human peptide antibiotic FALL-39", Proc Natl Acad Sci U S A, 92, 7085-7089, (1995)
8. Jenssen H, Hamill P, Hancock RE, "Peptide antimicrobial agents", Clin Microbiol Rev, 19, 491-511, (2006)
9. Salomon RA, Farias RN, "Microcin 25, a novel antimicrobial peptide produced by Escherichia coli", J Bacteriol, 174, 7428-7435, (1992)
10. Wiedemann I, Breukink E, van Kraaij C, Kuipers OP, Bierbaum G, et al., "Specific binding of nisin to the peptidoglycan precursor lipid II combines pore formation and inhibition of cell wall biosynthesis for potent antibiotic activity", J Biol Chem, 276, 1772-1779, (2001)
11. Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, et al., "Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin", J Dairy Sci, 74, 4137-4142, (1991)
12. Bellamy W, Takase M, Wakabayashi H, Kawase K, Tomita M, "Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin", J Appl Bacteriol, 73, 472-479, (1992)
13. Vorland LH, Ulvatne H, Andersen J, Haukland HH, Rekdal O, et al., "Antibacterial effects of lactoferricin B", Scand J Infect Dis, 31, 179-184, (1999)
14. Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ, "Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin", Biochemistry, 37, 4288-4298, (1998)
15. Podda E, Benincasa M, Pacor S, Micali F, Mattiuzzo M, et al., "Dual mode of action of Bac7, a proline-rich antibacterial peptide", Biochim Biophys Acta, 1760, 1732-1740, (2006)
16. Haukland HH, Ulvatne H, Sandvik K, Vorland LH, "The antimicrobial peptides lactoferricin B and magainin 2 cross over the bacterial cytoplasmic membrane and reside in the cytoplasm", Febs Letters, 508, 389-393, (2001)
17. Ulvatne H, Samuelsen O, Haukland HH, Kramer M, Vorland LH, "Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis", Fems Microbiology Letters, 237, 377-384, (2004)
18. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, et al., "Global analysis of protein activities using proteome chips", Science, 293, 2101-2105, (2001)
19. Chen CS, Korobkova E, Chen H, Zhu J, Jian X, et al., "A proteome chip approach reveals new DNA damage recognition activities in Escherichia coli", Nature Methods, 5, 69-74, (2008)
20. Chen CS, Zhu H, "Protein microarrays", Biotechniques, 40, 423-+, (2006)
21. Chandra H, Reddy PJ, Srivastava S, "Protein microarrays and novel detection platforms", Expert Rev Proteomics, 8, 61-79, (2011)
22. Yang L, Guo S, Li Y, Zhou S, Tao S, "Protein microarrays for systems biology", Acta Biochim Biophys Sin (Shanghai), 43, 161-171, (2011)
23. Beranova-Giorgianni S, "Proteome analysis by two-dimensional gel electrophoresis and mass spectrometry: strengths and limitations", Trac-Trends in Analytical Chemistry, 22, 273-+, (2003)
24. Lueking A, Possling A, Huber O, Beveridge A, Horn M, et al., "A nonredundant human protein chip for antibody screening and serum profiling", Molecular & Cellular Proteomics, 2, 1342-1349, (2003)
25. Chen CS, Sullivan S, Anderson T, Tan AC, Alex PJ, et al., "Identification of Novel Serological Biomarkers for Inflammatory Bowel Disease Using Escherichia coli Proteome Chip", Molecular & Cellular Proteomics, 8, 1765-1776, (2009)
26. Thao S, Chen CS, Zhu H, Escalante-Semerena JC, "Nepsilon-lysine acetylation of a bacterial transcription factor inhibits Its DNA-binding activity", PLoS One, 5, e15123, (2010)
27. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al., "Gene ontology: tool for the unification of biology. The Gene Ontology Consortium", Nat Genet, 25, 25-29, (2000)
28. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al., "MEME SUITE: tools for motif discovery and searching", Nucleic Acids Research, 37, W202-208, (2009)
29. Bailey TL, Elkan C, "Fitting a mixture model by expectation maximization to discover motifs in biopolymers", Proc Int Conf Intell Syst Mol Biol, 2, 28-36, (1994)
30. Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al., "The Pfam protein families database", Nucleic Acids Research, 38, D211-222, (2010)
31. Andres Leon E, Ezkurdia I, Garcia B, Valencia A, Juan D, "EcID. A database for the inference of functional interactions in E. coli", Nucleic Acids Res, 37, D629-635, (2009)
32. Saka K, Tadenuma M, Nakade S, Tanaka N, Sugawara H, et al., "A complete set of Escherichia coli open reading frames in mobile plasmids facilitating genetic studies", DNA Res, 12, 63-68, (2005)
33. Zhu X, Gerstein M, Snyder M, "ProCAT: a data analysis approach for protein microarrays", Genome Biol, 7, R110, (2006)
34. Maere S, Heymans K, Kuiper M, "BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks", Bioinformatics, 21, 3448-3449, (2005)
35. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, et al., "Integration of biological networks and gene expression data using Cytoscape", Nature Protocols, 2, 2366-2382, (2007)
36. Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, et al., "Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics", Anal Chem, 81, 7379-7389, (2009)
37. Lundblad JR, Laurance M, Goodman RH, "Fluorescence polarization analysis of protein-DNA and protein-protein interactions", Mol Endocrinol, 10, 607-612, (1996)
38. Parker GJ, Law TL, Lenoch FJ, Bolger RE, "Development of high throughput screening assays using fluorescence polarization: nuclear receptor-ligand-binding and kinase/phosphatase assays", J Biomol Screen, 5, 77-88, (2000)
39. Allen M, Reeves J, Mellor G, "High throughput fluorescence polarization: a homogeneous alternative to radioligand binding for cell surface receptors", J Biomol Screen, 5, 63-69, (2000)
40. Moerke NJ (2009) Fluorescence Polarization (FP) Assays for Monitoring Peptide-Protein or Nucleic Acid-Protein Binding: John Wiley & Sons, Inc.
41. Jameson DM, Seifried SE, "Quantification of protein-protein interactions using fluorescence polarization", Methods-a Companion to Methods in Enzymology, 19, 222-233, (1999)
42. Zhu J, Shimizu K, "Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition", Metab Eng, 7, 104-115, (2005)
43. Phue JN, Noronha SB, Bhattacharyya R, Wolfe AJ, Shiloach J, "Glucose metabolism at high density growth of E. coli B and E. coli K: Differences in metabolic pathways are responsible for efficient glucose utilization in E. coli B as determined by microarrays and northern blot analyses (vol 90, pg 805, 2005)", Biotechnology and Bioengineering, 91, 649-649, (2005)
44. Webb M, "Pyruvate accumulation in growth-inhibited cultures of Aerobacter aerogenes", Biochem J, 106, 375-380, (1968)
45. Knight SM, Umezawa N, Lee HS, Gellman SH, Kay BK, "A fluorescence polarization assay for the identification of inhibitors of the p53-DM2 protein-protein interaction", Analytical Biochemistry, 300, 230-236, (2002)
46. Jordan A, Pontis E, Atta M, Krook M, Gibert I, et al., "A second class I ribonucleotide reductase in Enterobacteriaceae: characterization of the Salmonella typhimurium enzyme", Proc Natl Acad Sci U S A, 91, 12892-12896, (1994)
47. Boal AK, Cotruvo JA, Jr., Stubbe J, Rosenzweig AC, "Structural basis for activation of class Ib ribonucleotide reductase", Science, 329, 1526-1530, (2010)
48. Kolberg M, Strand KR, Graff P, Andersson KK, "Structure, function, and mechanism of ribonucleotide reductases", Biochimica Et Biophysica Acta, 1699, 1-34, (2004)
49. Nordlund P, Sjoberg BM, Eklund H, "Three-dimensional structure of the free radical protein of ribonucleotide reductase", Nature, 345, 593-598, (1990)
50. Zhu J, Shimizu K, "The effect of pfl gene knockout on the metabolism for optically pure D-lactate production by Escherichia coli", Appl Microbiol Biotechnol, 64, 367-375, (2004)
51. Ulvatne H, Samuelsen O, Haukland HH, Kramer M, Vorland LH, "Lactoferricin B inhibits bacterial macromolecular synthesis in Escherichia coli and Bacillus subtilis", FEMS Microbiol Lett, 237, 377-384, (2004)
52. Bailey TL, "Discovering novel sequence motifs with MEME", Curr Protoc Bioinformatics, Chapter 2, Unit 2 4, (2002)
53. Andres Leon E, Ezkurdia I, Garcia B, Valencia A, Juan D, "EcID. A database for the inference of functional interactions in E. coli", Nucleic Acids Research, 37, D629-635, (2009)
54. Chuang Y-C (2010) Identification of intracellular target proteins of lactoferricin B using Escherichia coli K12 proteome chips: National Taiwan Ocean University.