| 研究生: |
楊雅純 Ya-Chun Yang |
|---|---|
| 論文名稱: | Mining typical transactions from transaction databases |
| 指導教授: |
陳彥良
Yen-Liang Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | K-medoids 、Balanced K-means 、Genetic Algorithm 、Transaction Database |
| 外文關鍵詞: | K-medoids, Balanced K-means, Genetic Algorithm, Transaction Database |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著數位化時代的來臨,資料量暴增導致資訊過載,對於日理萬機的高階主管,要在短時間內消化大量資料,並且在對的時間,給予對的行銷方案實屬難事,為了解決資訊過載的問題,本研究提出了摘要化交易資料庫的演算法,在眾多資料中找出最具有代表性的交易資料,以減少資訊閱讀的時間。期望協助高階主管進行快速決策,讓高階主管可以使用少數具有高度可讀性的代表資料,來窺探整體線上交易零售資料庫,以快速得知整體的銷售概況。
本篇研究使用K-medoids、Balanced K-means以及Genetic Algorithm演算法運算,找出最能代表線上交易零售資料庫的交易紀錄,並且比較三者的總成本,而總成本是由代表成本及代表不平均成本組成,最後期望以Genetic Algorithm,來改善使用K-medoids運算時的代表問題,在降低代表成本的同時,也提高代表性。
With the digital generation coming, the data has been explosive growth and causes the information overloading. For a senior manager, it is hard to digest so much data and make a right marketing decision in right time. In order to resolve the problem of information overloading, this research provide an algorithm of transaction data reduction. It can reduce the time of searching the information by discovering the most representative data from the large data set. We expect to help senior managers to make the decision more efficiently.
With making good use of those representative data, they can see whole the online transaction retail database and realize the basic facts of all the sales in the short time.
This research will adopt the K-medoids, Balanced K-means and Genetic Algorithm to discover the most representative transaction data from the online transaction retail database. We will also compare the total cost of the three algorithm which is composed of representative cost and representative imbalanced cost. We propose the Genetic Algorithm can improve the representative problem, which is able to reduce the representative cost and also improve the representative of the data.
[1] Rajalakshmi Nandakumar and Laurel Orr, “Database Summarization”, CSE 544 Winter 2015.
[2] 連啟舜,「閱讀中的減法:摘要能力的發展與其相關因素研究」,2016年3月17卷2期
[3] 陳旭昇,統計學:應用與進階,(三版),東華出版社,2015年4月13日
[4] 洪家育, “Noise-free Attribute oriented induction” ,2015
[5] Regis Saint-Paul, Guillaume Raschia, Noureddine Mouaddib,“General purpose database summarization”
[6] Varun Chandola, Vipin Kumar “Summarization - Compressing Data into an Informative Representation”
[7] Jiawei Han, Micheline Kamber, Data Mining: Concept and Techniques, Second Edition
[8] Marti A. Hearst, “Clustering versus Faceted Categories for Information Exploration”
[9] 陳垂呈、楊明憲、陳宗義、李靖平,“利用分群化建置病患罹患疾病探勘系統”, 第十七屆資訊管理暨實務研討會
[10] 陳垂呈、洪茂峰、吳閔慧,“利用探勘技術發掘旅遊行程最適性之消費者”, 第五屆觀光休閒餐旅產業永續經營學術研討會
[11] Sugato Basu, Ian Davidson, Kiri Wagstaff, Constrained Clustering: Advances in Algorithms, Theory, and Applications. Chapman & Hall/CRC, 1 edition.
[12] P.S. Bradley, K.P. Bennett, A. Demiriz, “Constrained K-means Clustering with Background Knowledge”
[13] Mikko I. Malinen and Pasi Fr¨anti, “Balanced K-Means for Clustering”
[14] Shunzhi Zhu, Dingding Wang, Tao Li, “Data clustering with size constraints”, 2010
[15] 林豐澤,演化式計算:基因演算法以及三種應用實例
[16] 褚志鵬, “Analytic Hierarchy Process Theory” 2009
[17] 楊佩臻,利用文句關係網路自動萃取文件摘要之研究,國立中央大學,2013
[18] Ramona Georgescuy, Christian R. Bergery, Peter Willetty, Mohammad Azam, and Sudipto Ghoshal, “Comparison of Data Reduction Techniques Based on the Performance of SVM-type Classiers”, Dept. of Electr. and Comp. Engineering, University of Connecticut, Storrs, CT 06269, USA
[19] Rajalakshmi Nandakumar and Laurel Orr, “Database Summarization “ , CSE 544 Winter 2015
[20] 陳俊華,移動式網格之分散式資料分群技術,東吳大學資訊科學系,資訊管理研究第六期
[21] Hongjun Wang, Jianhuai Qi, Weifan Zhengm Mingwen Wang, “Balance K-means Algorithm”, Information Research Institute, South West Jiaotong University
[22] Mr. Ilango, Dr. V mohan, “A Survey of Grid Based Clustering Algorithms”, 1Professor, Department of Computer Applications, K L N College of Engineering, Pottapalaym- 630611., Sivagangai District, Tamilnadu, India
[23] Aristidis Likasa, Nikos Vlassisb, JakobJ. Verbeekb “The global k-means clustering algorithm”, 2002
[24] 劉政璋、葉鎮源、柯皓仁、楊維邦,“以概念分群為基礎之新聞事件自動摘要”,
國立交通大學資訊科學系、國立東華大學資訊管理系
[25] Cai, Y., “Attribute-oriented induction in relational databases”, 1989, Doctoral dissertation, Simon Fraser University