| 研究生: |
黃威廸 Wei-di Huang |
|---|---|
| 論文名稱: |
製備具高表面電位之奈米球 Fabricate nanosphere with high-level electric potential |
| 指導教授: |
陳暉
Hui Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 163 |
| 中文關鍵詞: | 表面電位 、穩定乳液 、奈米高分子球 、無乳化劑乳化聚合 、微乳化聚合 |
| 外文關鍵詞: | Zeta potential, microemulsion, emulsion stabilization, nanosphere, soap-free emulsion |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究乃使用無乳化劑乳化聚合法與微乳化聚合法,以苯乙烯(St)為主要單體,離子型共單體對-苯乙烯磺酸鈉鹽﹙NaSS﹚為共單體,製備出具高表面電位的奈米尺寸高分子球,另外在反應溶液中加入架橋劑二乙烯苯﹙DVB﹚或乙二醇二甲基丙烯酸酯(EGDMA),製備出具高表面電位之架橋奈米尺寸高分子球。並以動態粒徑分析儀(DLS)來探討在各種製備條件下對製備出的奈米高分子球其粒徑分佈、粒徑大小與表面電位的影響。
無乳化劑乳化聚合法使用沸騰法,將其反應溫度提升至沸騰狀態,加快反應時間,並利用不同的單體比例、一步驟合成法、兩步驟合成法與使用架橋劑等變數製備奈米高分子球與架橋高分子球。由實驗結果顯示加入水溶性離子單體的確可以使高分子球的粒徑更小,達到奈米尺寸的程度,且其表面電位也比-40.0 mV小。其中,以兩步驟合成法可得到更小粒徑與粒徑分佈較窄的奈米球,在第一階段轉化率50%時添加二階段單體,可合成出數目平均粒徑為21.7nm且其表面電位可達到 -51.4 mV的奈米球。
微乳化聚合法是使用十二烷基硫酸鈉﹙SDS﹚為乳化劑,在不同比例的單體比例搭配架橋劑,製備奈米高分子球或架橋高分子球。實驗結果顯示,添加NaSS可使反應的乳化劑添加量由3%降為1%,且數平均粒徑由19.7 nm降為7.7 nm。同時所製備之奈米架橋高分子,雖然架橋劑的存在,亦可得到9.9 nm大小數平均粒徑。
Preparations of nanospheres with high-level zeta potential by soap-free emulsion polymerization and microemulsion polymerization have been developed. These nanospheres were prepared by using styrene (St) as the main monomer, ionic co-monomer styrene sulfonate salt (NaSS) as comonomer. On the other hand, the crosslinked nanospheres were prepared by further adding crosslinking agent DVB or EGDMA. The size distribution, particle size and Zeta potential of nanospheres were measured by Dynamic particle size analysis (DLS).
The soap-free emulsion polymerization was reacted at the boiling state to increase the reaction rate. The results showed that increasing the weight fraction of NaSS from 0 to 6 wt.%, the size of nanosphere was decreased from 300 to 20 nm. The Zeta potential of nanosphere was smaller than -40.0 mV when the weight fraction of Nass was more than 1 wt.%. Nanospheres prepared by two step, adding Nass during a period of reaction time, the particle size and particle size distribution of nanospheres were decreased. However, the particle size and particle size distribution of crosslinked nanospheres were larger than those of nanospheres.
In microemulsion polymerization, nanosphere was prepared by adding NaSS to reduce the amount of emulsifier, sodium dodecyl sulfate (SDS). The results showed that increasing the weight fraction of SDS from 0 to 3 wt.%, the size of nanosphere was decreased from 300 to 20 nm. But when the SDS was 1%, increasing the weight fraction of NaSS from 0 to 4 wt.%, the size of nanosphere was decreased from 30 to 7.7 nm. adding NaSS can reduce emulsifier amount 3% to 1%, and the number average particle size reduced from 19.7 nm to 7.7 nm. The crosslink-nanosphere can also get the average particle size of 9.9 nm, the size of the number
(1) Z. S. Haidar, 〝Bio-Inspired/-Functional Colloidal Core-Shell Polymeric-Based NanoSystems: Technology Promise in Tissue Engineering, Bioimaging and NanoMedicine〞, Polymers, 2, 323-352, (2010)
(2) Y. Zhao, M. Moddaresi, S. A. Jones, 〝A dynamic topical hydrofluoroalkane foam to induce nanoparticle modification and drug release in situ〞, European Journal of Pharmaceutics and Biopharmaceutics, 72, 521-528, (2009)
(3) K. Nagase, J. Kobayashi, A. Kikuchi et al., 〝Interfacial Property Modulation of Thermoresponsive Polymer Brush Surfaces and Their Interaction with Biomolecules〞, Langmuir, 23, 9409-9415, (2007)
(4) Y. Gu, Q. Zhang, Y. Li et al., 〝Nitridation from core-shell oxides for tunable luminescence of BaSi2O2N2 : Eu2 +LED phosphors〞, Journal of Materials Chemistry, 20, 6050-6056, (2010)
(5) B. Platzer, R. D. Klodt, B. Hamann et al., 〝The influence of local flow conditions on the particle size distribution in an agitated vessel in the case of suspension polymerization of styrene〞, Chemical Engineering and Processing, 44, 1228-1236, (2005)
(6) H. Jung, K. Song, K. Lee et al., 〝Reaction and stabilizing mechanism of the cross-type macromonomers in the dispersion polymerization of styrene〞, Journal of Colloid and Interface Science, 308, 130-141, (2007)
(7) J. W. Kim, K. D. Suh, 〝Monodisperse micron-sized polystyrene particles by seeded polymerization: effect of seed crosslinking on monomer swelling and particle morphology 〞, Polymer, 41,6181-6188, (2000)
(8) K. Zhang, W. Wu, H. Meng et al., 〝Pickering emulsion polymerization: Preparation of polystyrene/nano-SiO2 composite microspheres with core-shell structure〞, Powder Technology, 190, 393-400, (2009).
(9) T. Yamamoto, M. Nakayama, Y. Kanda et al., 〝Growth mechanism of soap-free polymerization of styrene investigated by AFM 〞, Journal of Colloid and Interface Science, 297, 112-121, (2006)
(10) T. Matsumoto and A. Ochi, Kobunshi Kagaku, 〝Emulsifier-Free Emulsion Copolymerization of Styrene with Acrylamide and Its Derivatives〞, AMERICAN CHEMICAL SOCIETY, 22, 481 (1965).
(11) M. Arai, K. Arai and S. Saito, 〝Polymer particle formation in soapless emulsion polymerization〞. J Polym Sci Polym Chem 17,3655-3655 (1979),
(12)M. Arai, K. Arai and S. Saito, 〝On the rate of soapless emulsion polymerization of methyl methacrylate〞 Journal of Polymer Science: Polymer Chemistry Edition, 18, 2811-2821 (1980)
(13)G. W. Ceska, 〝The effect of carboxylic monomers on surfactant-free emulsion copolymerization〞,Journal of Applied Polymmer Science, 18, 427 (1974).
(14)Z. Shen., Synth. Rubber Ind., 4, 248 (1987).
(15)M. S. Juang and I. M. Krieger, 〝Emulsifier-free emulsion polymerization with ionic comonomer〞Journal of Polymer Science: Polymer Chemistry Edition, 14, 2089 -2107(1976).
(16)A. Kotera, K. Furusawa and Y. Takeda, Kolloid-Z. Z. Polym., 269,677 (1970).
(17)A. Kotera, K. Furusawa and Y. Takeda, Kolloid-Z. Z. Polym., 240, 837 (1970).
(18 ) J. W. Goodwin, J. Hearn, C. C. Ho and R. H. Ottewill, 〝The preparation and characterisation of polymer latices formed in the absence of surface active agents〞, British Polymer Journal, 5, 347-362 (1973).
(19) Y. Chung-Li, J. W. Goodwin and R. H. Ottewill, 〝Studies on the preparation and characterisation of monodisperse polystyrene latices IV. The preparation of latex particles with a size greater than 1 µm. 〞 Progress in Colloid and Polymer Science, 60, 163-175 (1976).
(20) R. M. Fitch, M. B. Prenosil and K. J. Sprick., 〝The mechanism of particle formation in polymer hydrosols. I. Kinetics of Aqueous Polymerization of Methyl Methacrylate.〞Journal of Polymer Science Part C: Polymer Symposia, 27, 95-118,(1969).
(21) R. H. Ottewill and J. N. Shaw, Kolloid-Z. Z. Polym., 215, 161 (1966).
(22) R. M. Fitch and C. H. Tsai, 〝The homogeneous nucleation of polymer colloids Polym〞. Colloids, Plenum press, New York (1971).
(23) R. M. Fitch, 〝The homogeneous nucleation of polymer colloids Polym〞British Polymer Journal., 5, 467-483 (1973).
(24) Z. Z. Gu, H. H. Chen, S. Zhang et al., 〝Rapid synthesis of monodisperse polymer spheres for self-assembled photonic crystals〞, Colloid and Surfaces A: Physicochem. Eng. Aspects, 302, 312-319, (2007).
(25) F. A. Bovey, I. M. Kolthoff, A. I. Medalia and E. J. Meehan, Emulsion polymerization, Interscience, NEW YORK (1995).
(26) A. R. Goodall, M. C. Wilkinson and J. Hearn, 〝 Mechanism of emulsion polymerization of styrene in soap-free systems〞Journal of Polymer Science: Polymer Chemistry Edition, 15, 2193-2218 (1977).
(27) Q. Wang, S. Fu and T. Yu, 〝 Emulsion polymerization〞,Progress in Polymer Science, 19, 703-753 (1994).
(28) Surfaces, Interfaces, and Colloids: Principles and Applications by Drew Myers, Wiley-VCH; 2 edition, 1999