| 研究生: |
時嘉志 Chia-Chih Shih |
|---|---|
| 論文名稱: |
以摻雜氨基磺酸之PEDOT:PSS電洞傳遞層製備高效率反式錫鈣鈦礦太陽能電池 Improving the Performance of Inverted Tin Perovskite Solar Cells with Sulfamic acid-doped PEDOT:PSS HTLs |
| 指導教授: |
吳春桂
Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 165 |
| 中文關鍵詞: | 錫鈣鈦礦 、太陽能電池 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
錫鈣鈦礦(TPsk)太陽能電池是將鉛鈣鈦礦太陽能電池吸光層的中心金屬以錫取代,TPsk有較鉛鈣鈦礦更接近Shockley–Queisser limit (S–Q limit)中最佳光電轉換效率所需具備的吸光層能隙(1.3-1.4 eV)且在環境中形成毒性較低的SnO2,具未來性。大多數錫鈣鈦礦太陽能電池(TPSC)的研究都著重在減少TPsk膜中Sn4+的量或調整吸光層能階來匹配電洞傳遞層(HTL)的能階進而提高TPSC的光電轉換效率及穩定性,本研究是以調整HTL能階的方式來提高HTL與吸光層之能階的匹配並同時改善沉積在HTL上之錫鈣鈦礦膜的品質來增加元件的效率。實驗將Sulfamic acid (SA)添加到PEDOT:PSS(aq) (PS)調整HTL的導電度及能階並沉積在PS膜上製備PS/SA@PS雙層HTL,以PS/SA@PS雙層膜作為HTL所組裝之元件的光電轉換效率可達10.49%且放置在手套箱中2016小時後光電轉換效率可維持原來的95%,比用PS單層膜作為HTL之元件的光電轉換效率(8.17%)高28%,PS單層膜作為HTL之元件的穩定性在相同測試條件下光電轉換效率也僅維持原來的63%。摻雜SA之PS膜的導電度約為PS膜的1.5倍、光穿透度在波長範圍380-700 nm比PS膜高且其work function(WF, -5.38 V)與TPsk膜之Valence band (-5.40)匹配性高。此外,沉積在含SA之HTL的TPsk膜中Sn2+/Sn4+比例(72/28)比沉積在PS膜上之TPsk膜的Sn2+/Sn4+比例(60/40)高,因SA中磺酸基團氧上的孤對電子會與SnI2及SnF2中之Sn2+產生交互作用製備出高品質的TPsk膜,使Sn2+不易氧化成Sn4+且減少SnF2在TPsk膜表面形成聚集,沉積在摻雜SA之PS膜上的錫鈣鈦礦膜比沉積在PS單層膜上的錫鈣鈦礦膜平坦且緻密且結晶度高。
Tin perovskite (TPsk) is a material used tin to replace lead in lead perovskite sola cell (PSC). TPsk with a band gap close to the ideal energy gap (~1.34 eV) in Shockley–Queisser limit (S–Q limit) and low toxic catches a great attention in solar cell community. Most research on tin perovskite solar cells (TPSC) focuses on reducing the amount of Sn4+ in the TPsk film or adjusting the energy level of the light-absorbing layer to match the energy level of the hole transporting layer (HTL) to improve the power conversion efficiency (PCE) and stability of TPSC In this study, the energy level of the PEDOT:PSS based HTL is adjusted to improve match of the energy level of light-absorbing layer, and improve the quality of the tin perovskite film deposited on the HTL to enhance the photovoltacic performance of the device. Sulfamic acid (SA) was added to PEDOT:PSS(aq) (PS) HTL to adjust the conductivity and energy level of SA@PS HTL. A layer of PS film was insert in-between ITO and SA@PS to prepare PS/SA@PS double-layer HTL. The PCE of the device based on PS/SA@PS HTL achieved the highest PCE of 10.49% and the PCE maintains 95% of the initial value when the cells was placed in the glove box for 2016 hours. On the other hand, the PCE of the device based on PS HTL (8.17 %) is 28% lower and its stability under the same test conditions maintains only 63% of the initial PCE. The conductivity of the PS film doped with SA is about 1.5 of that for the PS film and the light transmittance is slightly higher than the PS film in the wavelength range of 380-700 nm. The work function (WF, -5.38 V) of SA@PS has good match with the valence band (-5.40) of the TPsk film. In addition, the Sn2+/Sn4+ ratio (72/28) of the TPsk film deposited on SA@PS HTL is higher than that (60/40) of the TPsk film deposited on PS film, because of the lone pair of the oxygen in the sulfonic acid group will interact with Sn2+ in SnI2 and SnF2 to passivate TPsk film, making Sn2+ difficult to oxidize to Sn4+ and at the same time reducing the aggregation of SnF2 in the TPsk film. The tin perovskite film deposited on the PS/SA@PS film is flatter, denser and more crystalline than that deposited on PS HTL.
[1] https://udn.com/news/story/6849/50120410, November, 2020.
[2] http://en.wikipedia.org/wiki/Gustav_Rose, August, 2020.
[3] Jaeki Jeong, Minjin Kim, Jongdeuk Seo, Haizhou Lu, Paramvir Ahlawat, Aditya Mishra, Yingguo Yang, Michael A. Hope, Felix T. Eickemeyer, Maengsuk Kim, Yung Jin Yoon, In Woo Choi, Barbara Primera Darwich, Seung Ju Choi, Yimhyun Jo, Jun Hee Lee, Bright Walker, Shaik M. Zakeeruddin, Lyndon Emsley, Ursula Rothlisberger, Anders Hagfeldt, Dong Suk Kim, Michael Grätzel & Jin Young Kim, “Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells” Nature 2021, 592, 381-385.
[4] H. Kim, Y. H. Lee, T. Lyu, J. H. Yoo, T. Park and J. H. Oh, “Boosting the performance and stability of quasi-twodimensional tin-based perovskite solar cells using the formamidinium thiocyanate additive” J. Mater. Chem. A 2018, 6, 18173-18182.
[5] Kohei Nishimura, Muhammad Akmal Kamarudin, Daisuke Hirotani, Kengo Hamada, Qing Shen, Satoshi Iikubo, Takashi Minemoto, Kenji Yoshino and Shuzi Hayase, “Lead-free tin-halide perovskite solar cells with 13% efficiency” Nano Energy 2020,74,104858-104864.
[6] Chien-Hung Chiang and Chun-Guey Wu, “A methodto prepare highly oriented MAPbI3 crystallites for high efficiency perovskite solar cell to achieve 86% fill factor”, ACS Nano 2018, 12, 10355-10368.
[7] https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html 2021年7月
[8] Cuili Gai, Jigang Wang, Yongsheng Wang and Junming Li, “The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance”, Energies. 2020, 13(1), 2
[9] Feng Hao, Constantinos C. Stoumpos, Duyen Hanh Cao, Robert P. H. Chang and Mercouri G. Kanatzidis, “Lead-free solid-state organic–inorganic halide perovskite solar cells.” Nature Photon. 2014, 8, 489-494.
[10] Mulmudi Hemant Kumar, Sabba Dharani, Wei Lin Leong, Pablo P. Boix, Rajiv Ramanujam Prabhakar, Tom Baikie, Chen Shi, Hong Ding, Ramamoorthy Ramesh, Mark Asta, Michael Graetzel, Subodh G. Mhaisalkar and Nripan Mathews, “Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation.” Adv. Mater. 2014, 26, 7122-7127.
[11] Seon Joo Lee, Seong Sik Shin, Young Chan Kim, Dasom Kim, Tae Kyu Ahn, Jun Hong Noh, Jangwon Seo and Sang Il Seok, “Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2-Pyrazine Complex” J. Am. Chem. Soc. 2016, 138, 12, 3974-3977.
[12] Zonglong Zhu, Chu-Chen Chueh, Nan Li, Chengyi Mao, and Alex K.-Y. Jen, “Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route” Adv. Mater. 2017, 1703800.
[13] Ziran Zhao, Feidan Gu, Yunlong Li, Weihai Sun, Senyun Ye, Haixia Rao, Zhiwei Liu, Zuqiang Bian, and Chunhui Huang, “Mixed-Organic-Cation Tin Iodide for Lead-Free Perovskite Solar Cells with an Efficiency of 8.12%”, Adv. Sci. 2017, 4, 1700204.
[14] Bin-Bin Yu, Min Liao, Yudong Zhu, Xusheng Zhang, Zheng Du, Zhixin Jin, Di Liu, Yiyu Wang, Teresa Gatti, Oleg Ageev, and Zhubing He, “Oriented Crystallization of Mixed-Cation Tin Halides for Highly Efficient and Stable Lead-Free Perovskite Solar Cells”, Adv. Funct. Mater. 2020, 30, 2002230.
[15] Efat Jokar, Cheng-Hsun Chien, Cheng-Min Tsai, Amir Fathi and Eric Wei-Guang Diau, “Robust Tin-Based Perovskite Solar Cells with Hybrid Organic Cations to Attain Efficiency Approaching 10%”, Adv. Mater. 2018, 31, 4835-4841.
[16] M.A. Kamarudin, D. Hirotani, Z. Wang, K. Hamada, K. Nishimura, Q. Shen, T. Toyoda, S. Iikubo, T. Minemoto, K. Yoshino, S. Hayase, “Suppression of Charge Carrier Recombination in Lead-Free Tin Halide Perovskite via Lewis Base Post-treatment”, J. Phys. Chem. Lett. 2019, 10, 5277-5283.
[17] Weiqiang Liao, Dewei Zhao, Yue Yu, Corey R. Grice, Changlei Wang, Alexander J. Cimaroli, Philip Schulz, Weiwei Meng, Kai Zhu, Ren-Gen Xiong and Yanfa Yan, “Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%”, Adv. Mater. 2016, 28, 9333-9340.
[18] Feidan Gu, Senyun Ye, Ziran Zhao, Haixia Rao, Zhiwei Liu, Zuqiang Bian and Chunhui Huang, “Improving Performance of Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells by Tin Source Purification” Sol. RRL 2018, 2, 1800136-1800145.
[19] Qidong Tai, Xuyun Guo, Guanqi Tang, Peng You, Tsz-Wai Ng, Dong Shen, Jiupeng Cao, Chun-Ki Liu, Naixiang Wang, Ye Zhu, Chun-Sing Lee and Feng Yan, “Antioxidant grain passivation for air stable tin-based perovskite solar cells”, Angew. Chem. 2019, 58, 806-810.
[20] Xiangyue Meng, Tianhao Wu, Xiao Liu, Xin He, Takeshi Noda, Yanbo Wang, Hiroshi Segawa, and Liyuan Han, “Highly Reproducible and Efficient FASnI3 Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent”, J. Phys. Chem. Lett 2020, 11, 2965-2971.
[21] Xiao Liu, Yanbo Wang, Fengxian Xie, Xudong Yang, and Liyuan Han, “Improving the Performance of Inverted Formamidinium Tin Iodide Perovskite Solar Cells by Reducing the Energy-Level Mismatch”, ACS Energy Lett. 2018, 3, 1116-1121
[22] Wang, Y.; Hu, Y.; Han, D.; Yuan, Q.; Cao, T.; Chen, N.; Zhou, D.; Cong, H.; Feng, L., “Ammonia-treated graphene oxide and PEDOT:PSS as hole transport layer for high-performance perovskite solar cells with enhanced stability”, Org. Electron. 2019, 70, 63-70.
[23] Meiying Zhang, Dan Chi, Junfeng Wang, Fengmin Wu, Shihua Huang, “Improved performance of lead-tin mixed perovskite solar cells with PEDOT:PSS treated by hydroquinone”, Solar Energy 2020, 201, 589-595.
[24] Jian-Feng Li, Chuang Zhao, Heng Zhang, Jun-Feng Tong, Peng Zhang, Chun-Yan Yang, Yang-Jun Xia, and Duo-Wang Fan, “Improving the performance of perovskite solar cells with glycerol-doped PEDOT:PSS buffer layer”, Chin. Phys. B 2016, 25, NO. 028402.
[25] Yijie Xia, Hongmei Zhang and Jianyong Ouyang, “Highly conductive PEDOT:PSS films prepared through a treatment with zwitterions and their application in polymer photovoltaic cells”, J. Mater. Chem. 2010, 20, 9740-9747
[26] Chen, K.; Wu, P.; Yang, W.; Su, R.; Luo, D.; Yang, X.; Tu, Y.; Zhu, R.; Gong, Q., “Low-dimensional perovskite interlayer for highly efficient lead-free formamidinium tin iodide perovskite solar cells”, Nano Energy 2018, 49, 411-418.
[27] Yingchu Chen, Jie Shi, Xitao Li, Siqi Li, Xinding Lv, Xiangnan Sun, Yan-Zhen Zheng, and Xia Tao, “A universal strategy combining interface and grain boundary engineering for negligible hysteresis and high efficiency (21.41%) planar perovskite solar cells”, J. Mater. Chem. A 2020, 8, 6349-6359.
[28] Xizu Wang, Aung Ko Ko Kyaw, Cailiu Yin, Fei Wang, Qiang Zhu, Tao Tang, Phang In Yee and Jianwei Xu, “Enhancement of thermoelectric performance of PEDOT:PSS films by post-treatment with a superacid”, RSC Adv. 2018, 8, 18334-18340.
[29] Faris Yılmaz, (2016) “Conducting Polymers”, London: IntechOpen. Chapter 5.
[30] Haimang Yi, Dian Wang, Leiping Duan, Faiazul Haque, Cheng Xu, Yu Zhang, Gavin Conibeer, Ashraf Uddin, “Solution-processed WO3 and water-free PEDOT:PSS composite for hole transport layer in conventional perovskite solar cell”, Electrochimica Acta. 2019, 319, 349-358.
[31] Cong Liu, Jin Tu, Xiaotian Hu, Zengqi Huang, Xiangchuan Meng, Jia Yang, Xiaopeng Duan, Licheng Tan, Zhen Li, and Yiwang Chen “Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability”, Adv. Funct. Mater. 2019, 29, 1808059.
[32] D. Yang, R.X. Yang, X.D. Ren, X.J. Zhu, Z. Yang, C. Li, S.Z. Liu, Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport, Adv. Mater. 2016, 28, 5206-5213.
[33] Ziji Liu1, Hualin Zheng, Detao Liu, Zhiqing Liang, Wenyao Yang, Hao Chen, Long Ji, Shihao Yuan, Yiding Gu, and Shibin Li, “Controllable Two-dimensional Perovskite Crystallization via Water Additive for Highperformance Solar Cells”, Nanoscale Research Letters 2020, 15, 1-8.
[34] Patrycja Makuła, Michał Pacia, and Wojciech Macyk, “How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV−Vis Spectra”, J. Phys. Chem. Lett. 2018, 9, 6814-6817.
[35] Meiyue Liu, Ziming Chen, Zhen Chen, Hin-lap Yip, and Yong Cao, “Cascade-Type Electron Extraction Design for Efficient Low-Bandgap Perovskite Solar Cells Based on Conventional Structure with Suppressed Open-Circuit Voltage Loss”, Mater. Chem. Front. 2019, 3, 496-504.