| 研究生: |
李健銘 Jian-ming LI |
|---|---|
| 論文名稱: |
單一核甘酸差異來研究MIG1調控表現的機制 The Single Nucleotide Polymorphism Controlling Gene Expression of MIG1 |
| 指導教授: |
劉阜果
Fu-Guo Robert Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 單一核甘酸 |
| 外文關鍵詞: | Single Nucleotide |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
酵母菌在生長時會優先利用葡萄糖當作碳源進行發酵作用以供生長,當環境中的葡萄糖開始被消耗殆盡時,酵母菌細胞內的Mig1蛋白質會改變新陳代謝的作用,而使用其他的碳源,經由非發酵作用產生能量供自己生長。但有關於調節MIG1基因表現至今仍不清楚。先前的研究指出在MIG1基因的啟動區可能存在著4個核甘酸調控著MIG1基因的表現,這4個位置分別是-151、-152、-174和-498,其中-498的位置有可能扮演著調控MIG1基因表現的關鍵腳色位置。因此,我們藉由基因置換的方式建構-498單一核甘酸突變,來了解-498是否為調控MIG1基因的表現的唯一關鍵位置。
在本次實驗的結果發現,GYL43-1在第9個小時(T9)以及GYL43-2、GYL43-3在第13個小時(T13)為diuxic shift發生的時間點,發現MIG1基因在表現量上發生了變化,然而GYL43-3的MIG1基因表現卻與其他實驗組完全相反的結果,造成原因可能是因為在調配YPAD培養基時adenine比例上的誤差導致的結果。
根據焦磷酸根測序結果發現,GYL49實驗組中的gDNA(BY:RM)比值不如預期(1:1),gDNA比值呈現1:2-1:2.5,導致無法與GYL43野生型做比較。推論可能是因為在第一次基因置換時將MIG1的引子區序列改變,使得基因表現量無法達到正常水準,而在第二次基因置換時,BY實驗型將野生型RM的MIG1插入了染色體上其他的位置,而導致在GYL49實驗組的酵母菌中,RM的MIG1基因數量比BY來得高。
Yeasts preferentially use glucose as their carbon source via fermentation for growth. When glucose in the environment is exhausted, yeasts will adjust their metabolisms though Mig1 in order to use other carbon sources via non-fermentation processes for growth. However, the regulation of MIG1 expression remains unclear. Previous studies have indicated that four nucleotides, at positions -151, -152, -174 and -498, in the promoter region might control MIG1 expression levels, and the nucleotide located at -498 may play a key role in regulating MIG1 expressions. Therefore, we constructed a single nucleotide mutant strain by swapping to determine whether the nucleotide at position -498 is the only key regulatory.
Based on our results, we found out that GYL43-1 at the ninth hour(T9) and GYL43-2、GYL43-3 at the thirteenth hour(T13) time point were diuxic shift. But the MIG1 expression of GYL43-3 was opposite to the previous study results, and we inferred that our adenine concentrations were highly variable in YPAD media.
Based our pyrosequencing results, we found out that gDNA ratios (BY:RM) were not 1:1 in the experimental group, GYL49. The ratios of GYL49 gDNA were 1:2 to 1:2.5, therefore we could not compare the gene expression levels with the wild-type group, GYL43, to determine whether the nucleotide at position -498 is the only key regulatory. We inferred when we changed the promoter sequence after the first swapping, making the MIG1 expression level lower than normal, and during the second swapping, the BY strain inserted the wild-type RM strain`s MIG1 gene fragments into the chromosome at other sites. Therefore the MIG1 gene expression level of RM was higher than the one of BY in the experimental group, GYL49.
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995). "Current protocols in molecular biology." New York: John Wiley & Sons, Inc.
Barnett JA (1975). "The entry of D-ribose into some yeasts of the genus Pichia." J Gen Microbiol, 90(1): 1-12.
Burke D, Dawson D, Stearns T (2000). "Methods in yeast genetics." Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press.
Carlson M (1987). "Regulation of sugar utilization in Saccharomyces species." J Bacteriol, 196: 4777-4873.
Carrie BB, Adrian D, Gregory JC, Emerita C, Joachim L, Philip H, Jef DB (1998) "Designer deletion strains derived from Saccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications." Yeast, 14: 115–132.
Chang YW, Robert Liu FG, Yu N, Sung HM, Yang P, Wang D, Huang CJ, Shih MC, Li WH (2008). "Roles of cis- and trans-changes in the regulatory evolution of genes in the gluconeogenic pathway in yeast." Mol Biol Evol, 25(9): 1863-1875.
DeVit MJ, Johnston M (1999). "The nuclear exportin Msn5 is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae." Curr Biol, 9(21): 1231-1241.
Elia L, Marsh L (1996). "Role of the ABC transporter Ste6 in cell fusion during yeast conjugation." J Cell Biol, 135: 741-751.
Juana MG (1998). "Yeast carbon catabolite repression." Microbiol Mol Biol Rev, 62(2): 334-361.
Entian KD (1986). "Glucose repression: A complex regulatory system in yeast." Microbiol Sci, 3: 366-371.
Kurtzman CP, Fell JW (2006). "Yeast systematics and phylogeny-implications of molecular identification methods for studies in ecology." Biodiversity and Ecophysiology of Yeasts, The Yeast Handbook. Springer, pp: 11-30.
Jacque M, Jeffries W, Jean-Pierre C (1965). "On the nature of allosteric transitions: A plausible model." J Mol Biol, 12: 88-118.
Mortimer RK, Romano P, Suzzi G, Polsinelli M (1994). "Genome renewal: a new phenomenon revealed from a genetic study of 43 strains of Saccharomyces cerevisiae derived from natural fermentation of grape musts." Yeast, 10: 1543–1552.
Nehlin JO, Carlberg M, Ronne H (1989). "Yeast galactose permease is related to yeast and mammalian glucose transporters." Gene, 85: 313-319.
Neiman AM (2005). "Ascospore formation in the yeast Saccharomyces cerevisiae." Microbiol Mol Biol Rev, 69 (4): 565–584.
Henrik O, Anette H, Flemming GH, Jakob RW (2001). "Shedding light on disulfide bond formation: Engineering a redox switch in green fluorescent protein." J EMBO, 20: 5853-5862.
Paul RB, Ilda M, Dorothy M (1944). "Studies on some growth factors of yeasts." J Bacteriol, 48(4): 385-391.
Randez-Gil F, Bojunga N, Proft M, Entian KD (1997). "Glucose derepression of gluconeogenic enzymes in Saccharomyces cerevisiae correlates with phosphorylation of the gene activator Cat8p." Mol Cell Biol, 17(5): 2502-2510.
Rahner A, Schöler A, Martens E, Gollwitzer B, Schüller HJ (1996). "Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8." Nucleic Acids Res, 24(12): 2331-2337.
Schuller HJ (2003). "Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae." Curr Genet, 43: 139-160.
Wittkopp PJ, Haerum BK, Clark AG (2004). "Evolutionary changes in cis and trans gene regulation." Nature, 430: 85-88.
Yanling W, Ming L, David JO, Patrick SS (2009)."The roles of aldehyde dehydrogenases (ALDHs) in the PDH bypass of Arabidopsis." BMC Biochem, 10: 7.