跳到主要內容

簡易檢索 / 詳目顯示

研究生: 姜昱任
Yu-Jen Chiang
論文名稱: 運用深度卷積神經網絡 建立H 型鋼構件噴塗厚度分類系統之研究
Automatic H-shaped steel coating thickness classification using deep convolution neural network
指導教授: 陳介豪
Jieh-Haur Chen
蘇木春
Mu-Chun Su
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木系營建管理碩士班
Master's Program in Construction Management, Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 72
中文關鍵詞: H 型鋼構件表面噴塗殘餘神經網路演算法輕量化神經網路演算法厚度分類智慧工廠
外文關鍵詞: Steel Coating, Residual Neural Networks Algorithm, MobileNetV2, Thickness classification, Intelligent Factory
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • H 型鋼構件表面塗層的厚度高度影響H 型鋼構件的耐久性。 H 型鋼構件搭配不同
    的噴塗材料可以抵抗各種影響H 型鋼構件的情況。噴塗的厚度是決定噴塗效果的重要因素,
    過厚與過薄的噴塗都會影響H 型鋼構件的品質。然而,目前產業界檢測噴塗厚度大多為人
    工檢測,方法不可靠且存在誤差,因此,本研究透過類神經網路模型判斷塗層厚度是否足
    夠,進而建立一可應用於業界的自動厚度分類系統。噴塗結果的數值影像被預先分為三個
    組別,每個組別表示一種噴塗狀況(未噴塗、噴塗中、噴塗完成)。噴圖影像被分為訓練組
    與測試組,分別用於建立與驗證類神經網路模型。研究使用卷積神經網路預測表面噴塗的
    狀況,並根據模型預測結果判斷表面噴塗之厚度是否符合規範,研究分類結果顯示模型分
    類噴塗厚度準確率約為93%。研究所提出的方法可以降低檢驗成本,也大量減少了錯誤檢
    驗的發生。透過與噴塗儀器相結合,可將結果應用於實際場域,提高型鋼表面噴塗工作的
    效率。


    The thickness of H-shaped Steel coating is important for the durability of H-shaped
    Steel. With different coating materials applied to the H-shaped steel, it will be much capable
    to resistance rust and other situations. The thickness of the coating is an essential factor that
    determine the effect of the coating, improper thickness will cause problems and wastes.
    However, the detection method nowadays is held by human. The result is unreliable and
    error existence. Hence, the research uses machine learning to classify the thickness of the
    coating. The digital images are categorized into three groups, each group present a coating
    situation (uncoated, coating, and fully coated). Each figure is then separated into training
    group and testing group, which are used to generate the neural networks and test the
    accuracy of the networks respectively. The results of the neural networks will show if the
    thickness of the coating meet the thickness regulation. The research accuracy for the three
    group thickness classification is about 93%. The proposed method can reduce the cost of
    inspectors also eliminate the occurrence of mistakenly detection. The result can be applied
    to practical use by combining the classifying system with the coating machine and thus
    improve the efficiency of coating process.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iii LIST OF FIGURES vi LIST OF TABLES vii Chapter 1: Introduction 1 1.1. H-shaped Steel Background 1 1.2. Coating problems 2 1.3. Research Objectives 3 1.4. Research Scope 3 1.5. Thesis Structure 4 1.6. Study Flowchart 5 Chapter 2: Literature Review 6 2.1. Steel Coating 6 2.1.1 Coating Materials 6 2.1.2 Worker’s Coating Skill 8 2.1.3 Coating Thickness 8 2.2. Thickness Detection 9 2.3. Thickness Classification 10 2.4. Artificial Intelligent 13 2.4.1 Machine Learning 14 2.4.2 Deep Convolution Neural Network 16 Chapter 3: Methodology 19 3.1. Methodology scope 19 3.2. Data collection 21 3.2.1 Data collection 21 3.2.2 Data expansion 22 3.3. Model designs 23 3.3.1 Resnet 24 3.3.2 MobileNetV2 27 3.4. Algorithm design 33 3.4.1 Loss Function 33 3.4.2 Optimizer and Learning Rate 34 3.4.3 Training 36 Chapter 4: Results and discussion 38 4.1. Classification result 38 4.2. Discussion 40 Chapter 5: Conclusion and recommendations 49 5.1. Conclusions 49 5.2. Recommendations 50 References 51 Appendix 56 APPENDIX I: COATING REGULATION IN TAIWAN 56 APPENDIX II: Parameter tuning results 58 Models 58 Global Average Pooling 59 Learning Rate 59 Epochs 60

    1. Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional
    neural network. 2017 International Conference on Engineering and Technology (ICET),
    2. Alves-Lima, D., Song, J., Li, X., Portieri, A., Shen, Y., Zeitler, J. A., & Lin, H. (2020).
    Review of terahertz pulsed imaging for pharmaceutical film coating analysis. Sensors, 20(5),
    1441.
    3. Angst, U. M. (2018). Challenges and opportunities in corrosion of steel in concrete.
    Materials and Structures, 51(1), 1-20.
    4. Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications:
    Literature review and research directions. International Journal of Industrial Ergonomics,
    41(5), 573-583.
    5. Arabasadi, Z., Khorasani, M., Akhlaghi, S., Fazilat, H., Gedde, U. W., Hedenqvist, M. S., &
    Shiri, M. E. (2013). Prediction and optimization of fireproofing properties of intumescent
    flame retardant coatings using artificial intelligence techniques. Fire Safety Journal, 61, 193-
    199.
    6. Bai, X., Wang, L., Luo, X., Mi, H., Chen, H., Liu, L., Ji, M., & Gao, Y. (2020). A Layer
    Tracking Method for Ice Thickness Detection Based on GPR Mounted on the UAV. 2020
    4th International Conference on Imaging, Signal Processing and Communications (ICISPC),
    7. Belyadi, H., & Haghighat, A. (2021). Machine Learning Guide for Oil and Gas Using Python:
    A Step-by-step Breakdown with Data, Algorithms, Codes, and Applications. Gulf
    Professional Publishing.
    8. Benoit, M., Bataillon, C., Gwinner, B., Miserque, F., Orazem, M. E., Sánchez-Sánchez, C.
    M., Tribollet, B., & Vivier, V. (2016). Comparison of different methods for measuring the
    passive film thickness on metals. Electrochimica Acta, 201, 340-347.
    9. Botev, Z. I., Kroese, D. P., Rubinstein, R. Y., & L’Ecuyer, P. (2013). The cross-entropy
    method for optimization. In Handbook of statistics (Vol. 31, pp. 35-59). Elsevier.
    53
    10. Brijain, M., Patel, R., Kushik, M., & Rana, K. (2014). A survey on decision tree algorithm
    for classification.
    11. Cai, Z., Deng, S., Liao, H., Zeng, C., & Montavon, G. (2014). The effect of spray distance
    and scanning step on the coating thickness uniformity in cold spray process. Journal of
    thermal spray technology, 23(3), 354-362.
    12. Cai, Z., Liang, H., Quan, S., Deng, S., Zeng, C., & Zhang, F. (2015). Computer-aided robot
    trajectory auto-generation strategy in thermal spraying. Journal of thermal spray technology,
    24(7), 1235-1245.
    13. Calders, T., & Verwer, S. (2010). Three naive bayes approaches for discrimination-free
    classification. Data mining and knowledge discovery, 21(2), 277-292.
    14. Camastra, F., & Vinciarelli, A. (2015). Machine learning for audio, image and video analysis:
    theory and applications. Springer.
    15. Celebi, M. E., & Aydin, K. (2016). Unsupervised learning algorithms. Springer.
    16. Chidhambara, K., & Shankar, B. L. (2018). Optimization of robotic spray painting process
    parameters using taguchi method. IOP Conference Series: Materials Science and
    Engineering,
    17. data_science_python.data_science_python. https://radimrehurek.com/data_science_python/
    18. Dumoulin, V., & Visin, F. (2016). A guide to convolution arithmetic for deep learning. arXiv
    preprint arXiv:1603.07285.
    19. Dwivedi, D., Lepková, K., & Becker, T. (2017). Carbon steel corrosion: a review of key
    surface properties and characterization methods. RSC advances, 7(8), 4580-4610.
    20. Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-
    874.
    21. Fisher, D. H., Pazzani, M. J., & Langley, P. (2014). Concept formation: Knowledge and
    experience in unsupervised learning. Morgan Kaufmann.
    22. García-Pedrajas, N., Del Castillo, J. A. R., & Cerruela-García, G. (2015). A proposal for
    local $ k $ values for $ k $-nearest neighbor rule. IEEE transactions on neural networks and
    learning systems, 28(2), 470-475.
    23. Giurlani, W., Berretti, E., Innocenti, M., & Lavacchi, A. (2020). Measuring the thickness of
    metal coatings: a review of the methods. Coatings, 10(12), 1211.
    24. Goyal, T., Walia, R. S., & Sidhu, T. (2012). Study of coating thickness of cold spray process
    using Taguchi method. Materials and Manufacturing Processes, 27(2), 185-192.
    25. Hastie, T., Tibshirani, R., & Friedman, J. (2009). Overview of supervised learning. In The
    elements of statistical learning (pp. 9-41). Springer.
    26. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
    Proceedings of the IEEE conference on computer vision and pattern recognition,
    27. Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science,
    349(6245), 261-266.
    54
    28. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M.,
    & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision
    applications. arXiv preprint arXiv:1704.04861.
    29. Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., & Xu, W. (2018). Applications
    of support vector machine (SVM) learning in cancer genomics. Cancer genomics &
    proteomics, 15(1), 41-51.
    30. Itoh, Y., Hirohata, M., Hosoi, A., & Sugiura, Y. (2013). Anticorrosive performance of repair
    painting as remedy for deterioration in metallised steel. Corrosion engineering, science and
    technology, 48(7), 537-551.
    31. Jadon, S. (2020). A survey of loss functions for semantic segmentation. 2020 IEEE
    Conference on Computational Intelligence in Bioinformatics and Computational Biology
    (CIBCB),
    32. Jamali, S. S., & Mills, D. J. (2014). Steel surface preparation prior to painting and its impact
    on protective performance of organic coating. Progress in Organic Coatings, 77(12), 2091-
    2099.
    33. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent
    architectures of deep convolutional neural networks. Artificial Intelligence Review, 53(8),
    5455-5516.
    34. Kim, W., Jo, J. H., Kim, D., Kim, D., & Hong, S. (2016). Development of Auto-spray system
    to improve the quality of 3D Scanning Quality. Journal of the Korea Academia-Industrial
    Cooperation Society, 17(4), 100-105.
    35. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
    arXiv:1412.6980.
    36. Kucukler, M., Xing, Z., & Gardner, L. (2020). Behaviour and design of stainless steel Isection
    columns in fire. Journal of Constructional Steel Research, 165, 105890.
    37. Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274.
    38. Lyon, S. B., Bingham, R., & Mills, D. J. (2017). Advances in corrosion protection by organic
    coatings: What we know and what we would like to know. Progress in Organic Coatings,
    102, 2-7.
    39. Mills, D. J., & Jamali, S. S. (2017). The best tests for anti-corrosive paints. And why: A
    personal viewpoint. Progress in Organic Coatings, 102, 8-17.
    40. Mohamed, I. S. (2017). Detection and tracking of pallets using a laser rangefinder and
    machine learning techniques European Master on Advanced Robotics+(EMARO+),
    University of Genova, Italy].
    41. Mousavifard, S., Nouri, P. M., Attar, M., & Ramezanzadeh, B. (2013). The effects of zinc
    aluminum phosphate (ZPA) and zinc aluminum polyphosphate (ZAPP) mixtures on
    corrosion inhibition performance of epoxy/polyamide coating. Journal of Industrial and
    Engineering Chemistry, 19(3), 1031-1039.
    55
    42. Naderi, R., & Attar, M. (2010). The role of zinc aluminum phosphate anticorrosive pigment
    in protective performance and cathodic disbondment of epoxy coating. Corrosion Science,
    52(4), 1291-1296.
    43. Nadkarni, P. M., Ohno-Machado, L., & Chapman, W. W. (2011). Natural language
    processing: an introduction. Journal of the American Medical Informatics Association, 18(5),
    544-551.
    44. Nasteski, V. (2017). An overview of the supervised machine learning methods. Horizons. b,
    4, 51-62.
    45. Nie, J.-G., Zhu, L., Tao, M.-X., & Tang, L. (2013). Shear strength of trapezoidal corrugated
    steel webs. Journal of Constructional Steel Research, 85, 105-115.
    46. Olisa, S. C., Khan, M. A., & Starr, A. (2021). Review of Current Guided Wave Ultrasonic
    Testing (GWUT) Limitations and Future Directions. Sensors, 21(3), 811.
    47. Oshiro, T. M., Perez, P. S., & Baranauskas, J. A. (2012). How many trees in a random forest?
    International workshop on machine learning and data mining in pattern recognition,
    48. Poursaee, A. (2016). Corrosion of steel in concrete structures. In Corrosion of steel in
    concrete structures (pp. 19-33). Elsevier.
    49. Pradhan, A. (2012). Support vector machine-a survey. International Journal of Emerging
    Technology and Advanced Engineering, 2(8), 82-85.
    50. Priyam, A., Abhijeeta, G., Rathee, A., & Srivastava, S. (2013). Comparative analysis of
    decision tree classification algorithms. International Journal of current engineering and
    technology, 3(2), 334-337.
    51. RainbowPaint.https://www.rainbowpaint.com.tw/products/heavy-dutycoatings/epoxy/1076-
    epoxy-zinc-phosphate-primer
    52. Reis, A., Lopes, N., & Real, P. V. (2019). Ultimate shear strength of steel plate girders at
    normal and fire conditions. Thin-Walled Structures, 137, 318-330.
    53. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint
    arXiv:1609.04747.
    54. Russe, I.-S., Brock, D., Knop, K., Kleinebudde, P., & Zeitler, J. A. (2012). Validation of
    terahertz coating thickness measurements using X-ray microtomography. Molecular
    Pharmaceutics, 9(12), 3551-3559.
    55. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mobilenetv2:
    Inverted residuals and linear bottlenecks. Proceedings of the IEEE conference on computer
    vision and pattern recognition,
    56. Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural networks,
    61, 85-117.
    57. Schwing, A. G., & Urtasun, R. (2015). Fully connected deep structured networks. arXiv
    preprint arXiv:1503.02351.
    58. Shan, M., Cheng, Q., Zhong, Z., Liu, B., & Zhang, Y. (2020). Deep-learning-enhanced ice
    thickness measurement using Raman scattering. Optics express, 28(1), 48-56.
    56
    59. Shang, H., Ma, K., Wei, Y., & Lu, Y. (2019). Experimental studies on shear resistance
    performances for the shear key of H shape steel spatial grid roofs. Latin American Journal
    of Solids and Structures, 16.
    60. Sharma, S., Sharma, S., & Athaiya, A. (2017). Activation functions in neural networks.
    towards data science, 6(12), 310-316.
    61. Singh, A., Yadav, A., & Rana, A. (2013). K-means with Three different Distance Metrics.
    International Journal of Computer Applications, 67(10).
    62. Sperandei, S. (2014). Understanding logistic regression analysis. Biochemia medica, 24(1),
    12-18.
    63. Standard, N. (2012). Surface preparation and protective coating. NORSOK M-501, Norway.
    64. Sun, M., Song, Z., Jiang, X., Pan, J., & Pang, Y. (2017). Learning pooling for convolutional
    neural network. Neurocomputing, 224, 96-104.
    65. Szepesvári, C. (2010). Algorithms for reinforcement learning. Synthesis lectures on artificial
    intelligence and machine learning, 4(1), 1-103.
    66. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., & Liu, C. (2018). A survey on deep transfer
    learning. International conference on artificial neural networks,
    67. Tayade, A., Thakur, M., Vathari, L., & Kuchiwale, S. (2020). Interactive Speech Recognition
    Agent System using AI.
    68. Thierry, D., Prosek, T., Le Bozec, N., & Diller, E. (2011). Corrosion protection and corrosion
    mechanisms of continuous galvanised steel sheet with focus on new coating alloys. Proc.
    Galvatech ‘11, 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet,
    Genova, Italy,
    69. Umadevi, S., & Marseline, K. J. (2017). A survey on data mining classification algorithms.
    2017 International Conference on Signal Processing and Communication (ICSPC),
    70. Wang, B., Ma, F., Ge, L., Ma, H., Wang, H., & Mohamed, M. A. (2020). Icing-EdgeNet: a
    pruning lightweight edge intelligent method of discriminative driving channel for ice
    thickness of transmission lines. IEEE Transactions on Instrumentation and Measurement,
    70, 1-12.
    71. Wang, H.-C., Zyuzin, A., & Mamishev, A. V. (2013). Measurement of coating thickness and
    loading using concentric fringing electric field sensors. IEEE Sensors Journal, 14(1), 68-78.
    72. Wang, Y.-B., Li, G.-Q., Chen, S.-W., & Sun, F.-F. (2012). Experimental and numerical study
    on the behavior of axially compressed high strength steel columns with H-section.
    Engineering Structures, 43, 149-159.
    73. Wang, Y., Li, Y., Song, Y., & Rong, X. (2020). The influence of the activation function in a
    convolution neural network model of facial expression recognition. Applied Sciences, 10(5),
    1897.
    74. Wang, M., Lu, S., Zhu, D., Lin, J., & Wang, Z. (2018, October). A high-speed and lowcomplexity
    architecture for softmax function in deep learning. In 2018 IEEE Asia Pacific
    Conference on Circuits and Systems (APCCAS) (pp. 223-226). IEEE.
    57
    75. Xu, C., He, L., Xiao, D., Ma, P., & Wang, Q. (2020). A novel high-frequency ultrasonic
    approach for evaluation of homogeneity and measurement of sprayed coating thickness.
    Coatings, 10(7), 676.
    76. Yang, F., Zhang, W., Tao, L., & Ma, J. (2020). Transfer learning strategies for deep learningbased
    PHM algorithms. Applied Sciences, 10(7), 2361.
    77. Zakwan, F., Krishnamoorthy, R., Ibrahim, A., & Ismail, R. (2020). Finite Element Analysis
    of Coated (Intumescent Coating Protection) Cellular Steel Beam (CSB) Expose to Fire. IOP
    Conference Series: Materials Science and Engineering,
    78. Zhang, D., Zhou, X., Leung, S. C., & Zheng, J. (2010). Vertical bagging decision trees model
    for credit scoring. Expert Systems with Applications, 37(12), 7838-7843.
    79. Zhang, S., Li, X., Zong, M., Zhu, X., & Wang, R. (2017). Efficient kNN classification with
    different numbers of nearest neighbors. IEEE transactions on neural networks and learning
    systems, 29(5), 1774-1785.
    80. Zhao, Z., Liu, G., & Li, D. (2019). Deposition Thickness Detection Method based on Dust
    Distribution Law of Ventilation Dust Removal Pipeline. 2019 2nd International Conference
    on Safety Produce Informatization (IICSPI),
    81. Zheng, H., Chen, Z., & Xu, J. (2016). Bond behavior of H-shaped steel embedded in recycled
    aggregate concrete under push-out loads. International Journal of Steel Structures, 16(2),
    347-360.
    82. 公共工程委員會. 防蝕塗裝.
    https://pcces.pcc.gov.tw/CSInew/Default.aspx?FunID=Fun_14&SearchText=09971

    QR CODE
    :::