跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳冠傑
Kuan-Chieh Chen
論文名稱: 具思維鏈推理與動機誘因設計之智慧助教環境建置與成效評估
Development and Evaluation of an Intelligent Tutoring Environment Incorporating Chain-of-Thought Reasoning and Extrinsic Motivation Design
指導教授: 劉晨鐘
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 175
中文關鍵詞: 科學模擬智慧代理人思維鏈推理外在動機
外文關鍵詞: science simulation, intelligent agent, Chain-of-Thought reasoning, extrinsic motivation
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科學學習強調學生主動建構知識與理解科學概念,電腦模擬因具備視覺化與
    高互動性的特質,已廣泛應用於支持學生在科學活動中進行觀察與推理。隨著教學逐漸轉向線上環境,教師難以即時掌握學生的理解狀況與學習歷程,導致學生在操作模擬時常面臨概念迷失與學習瓶頸。為解決此問題,本研究建置一套結合大型語言模型與模擬平台的智慧助教系統,透過提示詞設計與多模態互動,協助學生在科學學習歷程中獲得即時與個別化的學習支援。
    本研究建構的智慧助教,搭配CoSci電腦模擬平台,打造具備思維鏈推理能
    力與結構化提示詞框架的教學對話模組。系統可根據學生的操作、模擬畫面與對話內容進行即時判斷與教學引導,並在特定情境下啟動動作模組與評分模組,以回應學生的學習需求。研究以臺灣北部高中一年級學生為對象,共22人,進行一日內的科學學習活動,並設計具外在動機機制(積分條)與無動機設計兩種版本,比較其對學生表現與互動歷程的影響。
    研究結果顯示,缺乏外在動機機制的學生反而展現出更顯著的學習成效,智
    慧助教能有效促進其主動提問、批判性思考與知識整合等深層學習行為。此外,智慧助教的回應品質與推理能力亦受提示詞設計影響,具情境整合與概念導向的提示詞更能提升其教學判斷的精準性與互動表現,進而有助於學生的知識建構與理解深化。分析也發現,學生在互動過程中展現的知識處理行為與智慧助教所推論的理解,部分與其學習成果具有顯著關聯。最後根據系統現有限制提出技術改進建議,作為未來智慧助教應用於科學教育之參考。


    Science learning emphasizes students’ active knowledge construction and conceptual understanding. Due to their visual and interactive nature, computer simulations have been widely used to support students' observation and reasoning in scientific activities. However, as instruction increasingly shifts to online environments, it becomes difficult for teachers to monitor students’ understanding and learning processes in real time, often leading to conceptual confusion and learning bottlenecks during simulation-based learning. To address this issue, this study developed an intelligent tutoring system that integrates a large language model with a simulation platform. By incorporating prompt design and multimodal interaction, the system provides students with immediate and individualized learning support throughout their science learning process.
    The intelligent tutor, built upon the CoSci simulation platform, features a dialogue module equipped with Chain-of-Thought reasoning and a structured prompt framework. The system responds to students’ simulation operations, screen visuals, and dialogues to deliver real-time instructional guidance. When appropriate, it also activates action and assessment modules to address students’ learning needs. This study was conducted with 22 first-year senior high school students in northern Taiwan who participated in a one-day science learning activity. Two interface versions were compared—one with an external motivational mechanism (a score bar) and one without—to examine their impact on students’ performance and interaction behaviors.
    The results revealed that students without the external motivational mechanism demonstrated significantly better learning outcomes. The intelligent tutor effectively fostered deep learning behaviors such as student-initiated questioning, critical thinking, and knowledge integration. Furthermore, the quality of the tutor’s responses and reasoning was influenced by prompt design; prompts that integrated contextual information and conceptual guidance enhanced the accuracy of instructional judgments and improved interaction quality, thereby supporting students’ knowledge construction and conceptual understanding. Analysis also indicated that students’ knowledge-processing behaviors and the tutor’s inferred understanding were partially correlated with their learning outcomes. Finally, this study proposes technical improvements to address current system limitations and offers recommendations for future applications of intelligent tutors in science education.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖目錄 viii 表目錄 ix 第一章 緒論 1 1-1研究背景與動機 1 1-2研究目的與問題 2 1-3名詞解釋 3 1-3-1智慧代理人(Intelligent Agent) 3 1-3-2思維鏈(Chain of Thought) 3 1-3-3認知學徒制(Cognitive Apprenticeship) 3 1-3-4外在動機(Extrinsic Motivation) 3 1-4論文架構 4 第二章 文獻探討 5 2-1電腦模擬中的科學探究 5 2-2智慧代理人 6 2-3思維鏈推理 7 第三章 系統設計 10 3-1系統架構 10 3-2系統運作流程 11 3-3系統介紹 12 3-3-1 CoSci物理模擬平台 12 3-3-2智慧助教系統 16 3-3-3提示詞編輯介面與自動化提示詞生成工具 24 3-3-4提示詞範例介紹與說明 26 第四章 研究方法 33 4-1研究流程 33 4-2研究對象 34 4-3實驗設計 34 4-4研究工具 37 4-4-1CoSci模擬科學學習活動 37 4-4-2物理概念試題 40 4-4-3學生行為與對話紀錄 41 4-5研究資料蒐集與分析 41 4-5-1概念試題學習成效 41 4-5-2智慧助教回應內容與思維鏈推理 42 4-5-3學生行為與對話 47 4-5-4學生知識處理與學習成效關聯 52 4-5-5智慧助教推理學生理解分類與學習成效關聯 52 4-5-6提示詞設計的影響 58 第五章 實驗結果與討論 59 5-1學習成效 59 5-2助教回應與推理 60 5-3學生行為與對話 63 5-4知識處理與學習成效 66 5-5理解層級與學習成效 69 5-6提示詞設計影響 72 5-7互動情況探討 78 5-7-1正面互動案例分析 78 5-7-2未達預期的互動與引導案例分析 86 第六章 結論與建議 96 6-1結論 96 6-1-1智慧助教在不同提示詞設計下,回應與推理品質是否存在差異?是否影響學生的學習歷程? 96 6-1-2智慧助教所推論的理解是否與學生的學習成果有關聯? 97 6-1-3學生在智慧助教引導下是否能展現顯著的學習成效?外在動機機制是否對學習表現與互動行為產生影響? 97 6-1-4學生在互動歷程中所展現的知識處理行為,是否與學習成效有關聯? 98 6-2研究限制 98 6-3未來建議 99 參考文獻 100 附錄A動量概念前測試題 105 附錄B動量概念後測試題 108 附錄C摩擦力概念前測試題 111 附錄D摩擦力概念後測試題 114 附錄E雪橇自動產生提示詞與修改後內容 117 附錄F雪橇提示詞內容 122 附錄G煙火自動產生提示詞與修改後內容 133 附錄H煙火提示詞內容 139 附錄I學生行為與智慧助教評分走勢圖 152 附錄J各模組提示詞 158

    Batir, S. B., & Akçay, H. (2022). Effects of multimodal representations on students' science learning. International Society for Technology, Education, and Science.
    Chang, C. J., Liu, C. C., Wu, Y. T., Chang, M. H., Chiang, S. F., Chiu, B. C., Wen, C. T., Hwang, F. K., Chao, P. Y., Lai, C. H., Wu, S. W., & Chang, C. K. (2016). Students' perceptions on problem solving with collaborative computer simulation. In 24th International Conference on Computers in Education, ICCE 2016 (pp. 166-168). Asia-Pacific Society for Computers in Education.
    Chi, M. T., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational psychologist, 49(4), 219-243.
    Cohn, C., Hutchins, N., Le, T., & Biswas, G. (2024, March). A chain-of-thought prompting approach with llms for evaluating students’ formative assessment responses in science. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 38, No. 21, pp. 23182-23190).
    Collins, A., Brown, J. S., & Newman, S. E. (1987). Cognitive apprenticeship: Teaching the craft of reading, writing, and mathtematics. Center for the Study of Reading Technical Report; no. 403.
    Cress, U., & Kimmerle, J. (2023). Co-constructing knowledge with generative AI tools: Reflections from a CSCL perspective. International Journal of Computer-Supported Collaborative Learning, 18(4), 607-614.
    Dai, C. P., & Ke, F. (2022). Educational applications of artificial intelligence in simulation-based learning: A systematic mapping review. Computers and Education: Artificial Intelligence, 3, 100087.

    Dai, C. P., Ke, F., Pan, Y., Moon, J., & Liu, Z. (2024). Effects of artificial intelligence-powered virtual agents on learning outcomes in computer-based simulations: A meta-analysis. Educational Psychology Review, 36(1), 31.
    De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305-308.
    Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., & Wang, L. (2023). Towards revealing the mystery behind chain of thought: A theoretical perspective. Advances in Neural Information Processing Systems, 36, 70757-70798.
    Gerard, L. F., Ryoo, K., McElhaney, K. W., Liu, O. L., Rafferty, A. N., & Linn, M. C. (2016). Automated guidance for student inquiry. Journal of Educational Psychology, 108(1), 60.
    Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). AutoTutor: An intelligent tutoring system with mixed-initiative dialogue. IEEE Transactions on Education, 48(4), 612-618.
    Hattori, H., Kato, A., & Yoshizoe, M. (2024, December). Integrating large language models into agent models for multi-agent simulations: Preliminary report. In 2024 Winter Simulation Conference (WSC) (pp. 230-241). IEEE.
    Jacobson, M. J., Taylor, C. E., & Richards, D. (2016). Computational scientific inquiry with virtual worlds and agent-based models: New ways of doing science to learn science. Interactive Learning Environments, 24(8), 2080-2108.
    Kruglanski, A. W., Friedman, I., & Zeevi, G. (1971). The effects of extrinsic incentive on some qualitative aspects of task performance 1. Journal of personality, 39(4), 606-617.

    Lee, A. V. Y., Teo, C. L., & Tan, S. C. (2024). Prompt engineering for knowledge creation: Using chain-of-thought to support students’ improvable ideas. AI, 5(3), 1446-1461.
    Lee, G. G., Latif, E., Wu, X., Liu, N., & Zhai, X. (2024). Applying large language models and chain-of-thought for automatic scoring. Computers and Education: Artificial Intelligence, 6, 100213.
    Lee, J., Chen, S. S., & Liang, P. P. (2025, April). Interactive sketchpad: A multimodal tutoring system for collaborative, visual problem-solving. In Proceedings of the Extended Abstracts of the CHI Conference on Human Factors in Computing Systems (pp. 1-14).
    Merrill, W., & Sabharwal, A. (2023). The expressive power of transformers with chain of thought. arXiv preprint arXiv:2310.07923.
    Munawar, S., Khalil Toor, S., Aslam, M., & Aimeur, E. (2019). Paca-its: A multi-agent system for intelligent virtual laboratory courses. Applied Sciences, 9(23), 5084.
    National Research Council. (2000). Inquiry and the National Science Education Standards: A guide for teaching and learning. National Academies Press.
    Ortiz, A. M. L., & Aliazas, J. V. C. (2021). Multimodal representations strategies in teaching science towards enhancing scientific inquiry skills among grade 4. IOER International Multidisciplinary Research Journal, 3(3), 107-118.
    Qin, F., Hao, Z., Yu, J., Liu, Z., & Zhang, Y. (2025). AI instructional agent improves student's perceived learner control and learning outcome: Empirical evidence from a randomized controlled trial. arXiv preprint arXiv:2505.22526.
    Reiff, R., Harwood, W. S., & Phillipson, T. (2002). A scientific method based upon research scientists' conceptions of scientific inquiry.

    Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary educational psychology, 25(1), 54-67.
    Swaak, J., Van Joolingen, W. R., & De Jong, T. (1998). Supporting simulation-based learning; the effects of model progression and assignments on definitional and intuitive knowledge. Learning and instruction, 8(3), 235-252.
    Trey, L., & Khan, S. (2008). How science students can learn about unobservable phenomena using computer-based analogies. Computers & Education, 51(2), 519-529.
    Triona, L. M., & Klahr, D. (2003). Point and click or grab and heft: Comparing the influence of physical and virtual instructional materials on elementary school students' ability to design experiments. Cognition and Instruction, 21(2), 149-173.
    Vanzo, A., Chowdhury, S. P., & Sachan, M. (2024). GPT-4 as a homework tutor can improve student engagement and learning outcomes. arXiv preprint arXiv:2409.15981.
    Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J., Chen, X., Lin, Y., Zhao, W. X., Wei, Z., & Wen, J. (2024). A survey on large language model based autonomous agents. Frontiers of Computer Science, 18(6), 186345.
    Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E., Le, Q., & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35, 24824-24837.
    Wiesner, T. F., & Lan, W. (2004). Comparison of student learning in physical and simulated unit operations experiments. Journal of Engineering Education, 93(3), 195-204.
    Wooldridge, M., & Jennings, N. R. (1995). Intelligent agents: Theory and practice. The knowledge engineering review, 10(2), 115-152.
    Wu, Y., Zhang, P., Xiong, W., Oguz, B., Gee, J. C., & Nie, Y. (2023). The role of chain-of-thought in complex vision-language reasoning task. arXiv preprint arXiv:2311.09193.
    Xi, Z., Chen, W., Guo, X., He, W., Ding, Y., Hong, B., Zhang, M., Wang, J., Jin, S., Zhou, E., Zheng, R., Fan, X., Wang, X., Xiong, L., Zhou, Y., Wang, W., Jiang, C., Zou, Y., Liu, X., … Gui, T. (2023). The rise and potential of large language model based agents: A survey. arXiv preprint arXiv:2309.07864.
    Zacharia, Z. C., & Constantinou, C. P. (2008). Comparing the influence of physical and virtual manipulatives in the context of the Physics by Inquiry curriculum: The case of undergraduate students’ conceptual understanding of heat and temperature. American Journal of Physics, 76(4), 425-430.
    朱翊瑄(2024)。生成式人工智慧對於線上科學探究之影響。桃園市國立中央大 學資訊工程學系碩士論文。
    許志仲(2024)。大型語言模型驅動之智慧學習助教對網路科學探究之成效評估。桃園市國立中央大學資訊工程學系碩士論文。
    鄭宇辰(2025)。融合思考鏈機制的主動型生成式智慧教學助手之設計與其對科學學習成效之分析。桃園市國立中央大學資訊工程學系碩士論文。

    QR CODE
    :::