| 研究生: |
陳大元 Ta-Yuan Chen |
|---|---|
| 論文名稱: |
人類病源體中的攝取訊號序列分析 DNA Uptake Signal Sequence in Human Pathogens |
| 指導教授: |
李弘謙
Hoong-Chien Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 攝取訊號序列 、嗜血桿菌 |
| 外文關鍵詞: | Haemophilus, Uptake Signal Sequence |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1.8 M長的嗜血桿菌(Haemophilus influenzae)基因組帶有1471個攝取訊號序列(uptake signal sequence USS) 。完整的嗜血桿菌攝取訊號序列為一個29 base長的序列,當中有9 base長的序列(AAGTGCGGT)是完全保守的。嗜血桿菌中有66%的攝取訊號序列嵌入在1738個已知或猜測的基因中。攝取訊號序列出現在嗜血桿菌基因組中的頻率為一個9 base長序列平均出現在嗜血桿菌基因組頻率的200倍。完整的攝取訊號序列總共大約佔了嗜血桿菌基因組長度的2.4%。基因組裡要存在這麼多的攝取訊號序列必須在維持細胞正常運作及攝取功能的演化上達到一定程度上的利益平衡。在此我們就從擁有這些攝取訊號序列所需付出的代價作定性的研究。我們分析結果是,細菌以各種可能的方法儘量減低它們擁有眾多攝取訊號序列所付出的代價。第二部分的分析之中,我們想要知道攝取訊號序列的演化是否穩定。嗜血桿菌跟巴斯德桿菌的共同祖先出現在兩億七千萬年前。在比對攝取訊號序列之後,我們發現有大約百分之六十的攝取訊號序列是屬於同源的序列,所以我們推測攝取訊號序列的演化是穩定而且緩慢的。
The 1.8 Mbp genome of Haemophilus influenzae carries 1471 copies of its DNA uptake signal sequence (USS), a 29 bases long oligonucleotide including a 100% conserved 9-base core, AAGTGCGGT, 66% of the which are embedded in the 1738 known and putative genes of the genome. The frequency of occurrence of the 9-base (core) USS is about 200 times statistical expectation. Together with its flanks, the USS in H. influenzae take up 2.4% of the otherwise streamlined genome. The embedding of so many USS in the genome is a penalty to the organism that must be balance by benefit to the organism derived from maintaining and evolving the uptake system. As a first step to understanding this balance we want to characterize and determine this cost. We find that at every possible instance the genome tried to minimize the cost. In the second part, we want to characterize the stability of USS evolution. H. influenzae and P. multocida have a common ancestor 270 million years ago. We find that about 60% USSs are homologs and conjecture that the evolution of USS has been stable and slow.
1. Albritton, W., Setlow, J., Thomas, M. & Sottnek, F. (1986) Int. J. Syst. Bacteriol. 36, 103
2. Bakkali, M., Chen, T.Y., Lee,H. C., and Redfield, R. J. (2004) PANS 101, 4513
3. Barany, F., Kahn, M.E. and Smith, H.O. (1983) PANS 80, 7274
4. Blows, M. W. (1999) Proc. R. Soc. Lond. B Biol. Sci. 266, 2169
5. Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004) Genome Research 14,1188
6. Danner, D. B., Deich, R. A., Sisco, K. L. and Smith, H. O. (1980) Gene 11, 311
7. Danner, D. B., Smith, H. O. and Narang, S. A. (1982) PNAS 79, 2393
8. Deich, R. A. and Smith, H. O. (1980) Mol. Gen. Genet. 177, 369
9. Dubnau, D. (1999) Annu. Rev. Microbiol. 53, 217
10. Dubnau, D. and Cirigliano, C. (1972) Mol. Gen. Genet. 120, 101
11. Fitzmaurice, W. P., Benjamin, R. C., Huang, P. C. and Scocca, J. J. (1984) Gene 31, 187
12. Fleischmann, R. et al. (1995) Science 269, 496
13. Gasin, I., Grimont, F., P. A. D. and Sanson-Le Pros, M. J. (1985) Int. J. Syst. Bacteriol. 35, 23
14. Goodgal, S. H. (1982) Ann. Rev. Genet 16, 169
15. Goodgal, S. H. and Mitchell, M. A. (1990) J. Bacteriol. 172, 5924
16. Goodman, S. D. and Scocca, J. J. (1988) PNAS 85, 6982
17. Graves, J. F., Biswas, G. D. and Sparling, P. F. (1982) J. Bacteriol. 152, 1071
18. Hedegaard, J., Okkels, H., Bruun, B., Kilian, M., Mortensen, K. K. and Norskov-Lauritsen, N. (2001) Microbiology 147, 2599
19. Hong, B. K. and Dewhirst, F. E., IADR/AADR/CADR 80th General Session, March 6-9, 2002, San Diego, abstr. 1448.
20. Karlin, S. and Altschul, S.F. (1990) PNAS 87,2264
21. Karlin, S., Mrazek, J. and Campbell, A. M. (1996) Nucleic Acids Res. 24, 4263
22. May, B. J., Zhang, Q., Li, L. L., Paustian, M. L., Whittam, T. S. and Kapur, V. (2001) PNAS 98, 3460
23. McClelland, M., Sanderson, K. E., Spieth, J., Clifton, S. W., Latreille, P., Courtney, L., Porwollik, S., Ali, J., Dante, M., Du,F., et al. (2001) Nature 413, 852
24. Redfield, R. J. (1991) Nature 352, 25
25. Singh, R. M. (1972) J. Bacteriol. 110, 266
26. Smith, H. O., Tomb, J. F., Dougherty, B. A., Fleischmann, R. D. and Venter, J. C. (1995) Science 269, 538
27. Smith, H. O., Gwinn, M. L. and Salzberg, S. L. (1999) Res. Microbiol. 150, 603
28. Tettelin, H. et al. (2000) Science 287, 1809
29. Wilcox , K. W. and Smith, H. O. (1975) J. Bacteriol. 122, 443
30. Benjamin Lewin , genes VII
31. Andreas D. Baxevanis and B. F. Francis Ouellette , BIOINFORMATICS
32. Gynthia and Per Jambeck , Developing Bioinformatics Computer Skills
33. David P. Clark and Lonnie D. Russell , Molecular Biology 2nd edition
34. 李權益, 分子生物學
35. 郝柏林 張淑譽, 生物信息學手冊 第2版
36. TIGR, http://www.tigr.org/
37. NCBI, http://www.ncbi.nlm.nih.gov/
38. Weblogo, http://weblogo.berkeley.edu/
39. Introduction to the Bacteria, http://www.ucmp.berkeley.edu/bacteria/bacteria.html
40. Haemophilus influenzae, http://textbookofbacteriology.net/haemophilus.html
41. The Sanger Institute: Neisseria meningitidis, http://www.sanger.ac.uk/Projects/N_meningitidis/
42. eMedicine – Pasteurella Multocida Infection, http://www.emedicine.com/med/topic1764.htm
43. Haemophilus somnus Disease in Cattle, http://edis.ifas.ufl.edu/BODY_VM066
44. Actinobacillus actinomycetemcomitans, http://ndt.oupjournals.org/cgi/content/full/17/4/663