跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱寰宇
HUAN-YU CHIU
論文名稱: 新型擠製鍛造製程應用於非標準齒型電纜鉗精密模具開發
New Extrusion Forging Process Applied to Non-standard Toothed Cable Cutter Precision Mold Development
指導教授: 傅尹坤
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 64
中文關鍵詞: 新型擠製鍛造非標準齒輪Qform 3D精密模具多芯電纜剪鉗
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本碩士論文研究中,製造非標準齒輪的熱間鍛造技術,通過模擬和數值研究進行驗證。研究的目的是為了尋找精密加工鍛造過程中的製程缺陷,並實現多芯電纜剪鉗在閉模熱鍛中形成的非標準齒輪齒,同時取代傳統的熔模鑄造和開模鍛造。此外,為了確定非標準齒輪齒的形成,提出了新型擠出鍛造齒型成型(extrusion-forging teeth forming, EFT)方法,並利用有限元素分析軟體Qform 3D進行模擬研究,並進行實驗研究比較。
    特殊非標準齒輪的研究參數對齒型成型進行有條理的分析,並與實驗研究形成鮮明對比。並且提出三種不同的鍛造預製工件進模擬研究分析。基於模擬的結果,已經獲得工件成形,有效應力,有效應變和溫度相關的模擬結果來描述微觀現象。通過與實驗尺寸的比較,驗證了數值模型的準確性。
      最後提出了來自鍛造預製工件的所提出的改進幾何形狀以獲得類似的成形情況,同時降低製造費用。對於改進的幾何形狀預成型C,所提出的新型擠出鍛造齒型成型方法的最佳擠出鍛造比(R_x=A_x/A_m ) 和部分面積差比 (r_x=1-A_m/A_x ) 可以分別計算為 R_C = 1.38 和 r_C = 0.28。本研究歷經實際開發鍛造模具與模座已成功鍛製出具精密齒型多芯電纜剪鉗的活動刀跟固定刀。我們希望這一進步可為與任何幾何形狀相關的鍛造非標準齒輪提供有價值且有用的技術參考。


    In this study, a hot forging process in making non-standard gear will be experimentally as well as numerically researched. The purpose of the research is to look for the crucial station of the finishing forging process and also to realize the particular non-standard gear teeth forming within the closed die hot impression forging associated with multicore cable cutter and replace the traditionally investment casting and open die forging counterparts. Furthermore, in order to make certain realize the non-standard gear teeth forming, the novel extrusion-forging teeth forming (EFT) approach is proposed and simulated from the commercially obtainable finite element software Qform 3D.
    The processing parameters on the non-standard gear teeth forming are methodically analyzed and also carefully in contrast to experimental research. Three different forged prefabricated workpieces are proposed for simulation analysis. Based on consequences of the simulations, the material distributions associated with forming, stress, strain, and temperature have been obtained to describe the microscopic phenomena. Accuracy from the numerical models have been verified by comparing with experimental dimensions.
    The proposed modified geometry from the forged preform has been finally proposed to attain a similar forming situation while decreasing manufacturing expenses. The extrusion-forging ratio (R_x=A_x/A_m ) and the fractional reduction in area (r_x=1-A_m/A_x ) of the proposed EFT method can be calculated as R2 = 1.38 and r2 = 0.28 respectively for the modified geometry of preform C. This research has been developed and forged, and the mold and mold base have been successfully integrated and forged to produce a movable blade and fixed blade with precision teethed multicore cable cutters. We expect that this advancement can provide a valuable and useful technical reference for the forging of customized gears associated with any geometry.

    目 錄 摘 要 I Abstract III 誌 謝 V 目 錄 VI 圖目錄 VIII 表目錄 XI 第一章:緒論 1 1-1 前言 1 1-2 研究動機及方法 3 第二章:文獻回顧 4 2-1 文獻回顧 4 2-2 鍛造加工製成 6 2-3 熱間鍛造成形特性 8 第三章:材料與實驗設置 9 3-1 實驗材料 9 3-2 實驗設備 11 3-3 鍛造成形模具 18 第四章:模擬結果與實驗探討 21 4-1 傳統手工具製程之缺陷 21 4-2 非標準齒輪的成型機製 25 4-3 有限元素模擬分析 28 4-3-1 非標準齒輪成型的模擬分析 28 4-3-2 模擬參數對齒輪齒變形的分析 36 4-4 非標準齒輪圍觀組織探討 39 第五章:結論 44 參考文獻 46

    參考文獻
    [1] 周俊宏編著, “金屬二次加工Technology roadmap專題研究--沖壓、鍛造” , 金屬中心, 2003.
    [2] Guo WC, Mao SM, Yang Y. Optimization of cutter blade profile for face-hobbed spiral bevel gears. Int J Adv Manuf Technol 2016; 85(1):209–216.
    [3] Dean TA. The net-shape forming of gears. Mater Des 2000; 21:271–278.
    [4] Huang PH, Lin CJ. Computer-aided modeling and experimental verification of optimal gating system design for investment casting of precision rotor. Int J Adv Manuf Technol 2015; 79:997–1006.
    [5] Alizadeh M. Correlation between the continuous casting parameters and secondary dendrite arm spacing in the mold region. Mater Lett 2013; 91:146–149.
    [6] Liu CH, Jin J, Lai XM, He B, Li F. Influence of complex structure on the shrinkage of part in investment casting process. Int J Adv Manuf Technol 2015; 77(5-8):1191–1203.
    [7] Prasad Y, Rao KP. Materials modeling and finite element simulation of isothermal forging of electrolytic copper. Mater Des 2011; 32:1851–1858
    [8] Wan KT, Ho KL, Soo KB. Multi-stage cold forging and experimental investigation for the outer race of constant velocity joints. Mater Des 2013; 49:368–385
    [9] Kang GJ, Kim J, Kang BS. Numerical and experimental evaluation for elastic deformation of a cold forging tool and workpiece for a sleeve cam of an automobile start motor. Mech Eng 2008; 222:217–224
    [10] Deng XB, Lin H, Han XH. Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear. Mater Design 2011; 32:1376–1389
    [11] Liu J, Cui ZS. Hot forging process design and parameters determination of magnesium alloy AZ31B spur bevel gear. J Mater Process Technol 2009; 209:5871–5880
    [12] Lai RJ. Numerical simulation of forging process of spiral bevel gear. ASME 2012 International Mechanical Engineering Congress and Exposition. Design, Materials and Manufacturing, Parts A, B, and C 2012; 3:75–76
    [13] Choi JC, Choi Y. Precision forging of spur gears with inside relief. Int J MachTools Manuf 1999; 39(10):1575–88.
    [14] Kondo K, Ohga K. Precision cold die forging of a ring gear by divided flowmethod. Int J Mach Tools Manuf 1995; 35(8):1105–13.
    [15] Tuncer C, Dean TA. Die design alternatives for precision forging hollow parts.Int J Mach Tools Manuf 1987; 27(1):65–76.
    [16] Wang W, Zhao J, Zhai RX. A forming technology of spur gear by warm extrusion and the defects control. J Manuf Process 2016; 21:30-38.
    [17] Hu CL, Wang KS, Liu QK. Study on a new technological scheme for cold forgingof spur gears. J Mater Process Technol 2007; 187–188:600–3.
    [18] Hu CL, Liu QK, Zhao Z, et al. Two step forging process of spur gear based on rigidparallel motion. J Shanghai Jiaotong Univ (Sci) 2010; 15(2):241–4.
    [19] Song JH, Im YT. Process design for closed-die forging of bevel gear by finite element analyses. J Mater Process Tech 2007; 192-193:1–7
    [20] Wang HJ, Hua L, Xia JC. Forming analysis of closed die extrusion for spiral bevel driving gear of automotive final drive. Trans Chin Agric Mach 2006; 37:133–136
    [21] Luo SM, Fang Y. Numerical simulation on precision forging of spiral bevel gears. Chin Mech Eng 2009; 20:485–487
    [22] Zhao J, Luo SM, Li FQ. Study on precision forming and liftout process of small cone angle spiral bevel gear by finite element analysis. J Mater Process Tech 2017; 5:1–10
    [23] Song JH, Im YT. Determination of a major design parameter for forward extru-sion of spur gears. J Manuf Sci Eng 2004; 126(2):255–63.
    [24] Hongchao J, Jinping L, BaoyuW, Zhengrong Z, Tao Z, Zhenghuan H. Numerical analysis and experiment on cross wedge rolling and forging for engine valves. J Mater Process Technol 2015; 221:223–242
    [25] Duarte M, Martins H. Inner joint forming and pullout simulation using finite element analysis. SAE Tech Paper 2004; 1:3422
    [26] Zhu CD, Jiang X, Dai TL. Research on technology of twin rollers rotary forging of spiral bevel gears. Ironmak Steelmak 2015; 42:632–640
    [27] Chan WL, Fu MW, Lu J. Experimental and simulation study of deformation behavior in micro-compound extrusion process. Mater Des 2011; 32:525–534
    [28] Yang XL, Shu-Fang WU. Analysis on wear of forming die for precision forging of spiral bevel gears based on archard wear theory. J Changchun U 2014; 4:451–454
    [29] Murat A, Tekkaya A, Özhan F. Comparison of various preforms for hot forging of bearing rings, journal of materials processing technology. J Mater Process Tech 2005; 169:72–82
    [30] Gao ZS, Li JB, Deng XZ, Yang JJ, et al. Research on gear tooth forming control in the closed die hot forging of spiral bevel gear, Int J Adv Manuf Technol 2018; 94:2993–3004.
    [31] Chen S. Numerical simulation of cold forging for spiral bevel gear based on divided flow method. J Mech Transm 2013; 3:91–93
    [32] Deng XB, Hua L, Han XH. Three-dimensional FEmodelling simulation of cold rotary forging of spiral bevel gear. Ironmak Steelmak 2011; 38:101–111
    [33] Cai J, Dean TA, Hu ZM. Alternative die designs in net-shape forging of gears. JMater Process Technol 2004; 150(1–2):48–55.
    [34] Xu WC, Zhao XK, Shan DB, et al. Numerical simulation and experimental study on multi-pass stagger spinning of internally toothed gear using plate blank. Journal of Materials Processing Technology 2016; 229 450–466
    [35] Wang D, Shib T, Pan J, Liao G, Tang Z, Liu L. Finite Element Simulation and Experimental Investigation of Forming Micro-Gear with Zr–Cu–Ni–Al Bulk Metallic Glass. Journal of Materials Processing Technology 2009; 210:684–688.
    [36] 徐智鈞, “精密熱鍛模擬及模具合理化分析” , 碩士論文, 國立中央大學機械工程研究所, 2016
    [37] Hsu C, Huang J, Chen W, et al. Numerical analysis and experimental validation on multi-stage warm forging process of deep groove ball bearing—a modified punch geometry with microstructure and defect analysis. Int J Adv Manuf Tech 2017; 89(5–8):2119–2128.
    [38] 昇茂金屬股份有限公司,
    http://www.sheng-maw.com.tw/productshow.php?id=241

    QR CODE
    :::