| 研究生: |
藍崇禎 Chung-chen Lan |
|---|---|
| 論文名稱: |
陽極氧化鋁奈米模板法製備尺寸可調控之金屬奈米點、奈米線、奈米管陣列之研究 AAO-templated fabrication of size-controllable metal nanodots, nanowires and nanotubes. |
| 指導教授: |
鄭紹良
S.L.Cheng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 銀奈米點 、鎳奈米管 、鎳奈米線 、模板 、電鍍 、陽極氧化鋁 |
| 外文關鍵詞: | Ag nanodot, Ni nanotube, Ni nanowire, electrodeposition, template, anodic aluminum oxide, AAO |
| 相關次數: | 點閱:18 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究我們使用新穎兩次陽極氧化製程成功製備出規則孔洞排列的超薄陽極氧化鋁膜。超薄陽極氧化鋁膜孔徑約為86 奈米,且厚度可調控在400-700奈米之間。將超薄陽極氧化鋁膜轉附至矽單晶基材上當作模板可成功於矽單晶基材上製備各式零維與一維金屬奈米結構。
本研究首先藉由超薄陽極氧化鋁模板與電子蒸鍍技術可於矽單晶基材上成功製備大面積規則有序排列的銀金屬奈米點,銀奈米點的直徑可經熱處理調控在41-24奈米之間。此外,本研究也結合直流電沉積與超薄陽極氧化鋁模板法成功地在矽單晶基材上製備準直有序排列之一維鎳金屬奈米線。鎳奈米線長度可由電沉積時間所調控,而所製備的鎳奈米線直徑約為82奈米,與超薄陽極氧化膜的孔徑大小相近,且其排列呈六方最密堆積,與陽極氧化鋁膜的孔洞排列結構相同。實驗中若藉由添加少量的Pluronic P123於鎳電鍍液中則可製備出高密度排列之鎳金屬奈米管,且鍍製時 Pluronic P123的濃度對鎳金屬奈米管的成長速率與外觀形貌影響十分顯著。不同實驗條件所製備各式金屬奈米結構之外觀形貌、晶體結構與組成成分變化,將利用SEM, TEM, SAED與EDS做有系統的分析探討。
In the study, we have proposed a novel two-step anodic oxidation method to fabricate ultra-thin anodic aluminum oxide (AAO) membranes with highly-ordered nanopore structures. The nanopore diameter of the ultra-thin AAO membrane was about 86 nm, and the thickness can be tuned from 400 nm to 700 nm. The ultra-thin AAO membranes were then transferred onto Si substrates and served as the template for the fabrication of various O-D and 1-D metal nanostructures on Si substrates.
By combining the ultra-thin AAO template and e-beam deposition techniques, large-area, well-ordered arrays of silver metal nanodots were successfully fabricated on Si substrates. After appropriate heat treatments, the diameter of the silver nanodots produced can be tuned from 41 nm to 24 nm. On the other hand, by using DC electrodeposition within the ultra-thin AAO templates, vertically-aligned periodic arrays of 1-D nickel metal nanowires on Si substrates were successfully obtained. The Ni nanowires array exhibits the same hexagonal arrangement as the AAO nanopore strictures.The length of Ni nanowires could be controlled by adjusting the electrodeposition time. The diameter of Ni nanowires was approximately 82 nm, corresponding to the nanopore size of ultra-thin AAO templates. By adding small amount of Pluronic P123 into the nickel electroplating electrolyte, high-density, well-aligned nickel nanotubes were successfully synthesized. The growth rate and morphologies of the nickel nanotubes were greatly affected by the concentrations of Pluronic P123. The morphologies, crystal structures, and compositions of the O-D nanodots and 1-D nanowires and nanotubes have been systematically investigated by SEM, TEM, SAED, and EDS analyses.
參考文獻
[1] W. Barthlott, and C. Neinhuis,“Purity of the scared lotus, or escape from contamination in biological surfaces,” Planta 202 (1997) 1-8.
[2] J. M. López, D. Altbir, P. Landeros, J. Escrig, A. H. Romero,I. V. Roshchin,C. P. Li, M. R. Fitzsimmons, X. Batlle, and I. K. Schuller, “Development of vortex state in circular magnetic nanodots: Theory and experiment,” Physical Review B 81 (2010) 184417 1-8.
[3] E. B. Gowda, B. Nandan, N. C. Bigall, A. Eychmüller, P. Formanek, and M. Stamm, “Hexagonally ordered arrays of metallic nanodots from thin films of functional block copolymers,” Polymer 51 (2010) 2661-2667.
[4] J. Xu, G. Chen, C. Song, K. Chen, X. F. Huang, and Z. Y. Ma, “Formation and properties of high density Si nanodots,” Applied Surface Science 256 (2010) 5691-5694.
[5] S. Ramaswamy, G. K. Rajan, Gopalakrishnan, and M. Ponnavaikko, “Study of magnetization reversal of uniaxial Ni nanodots by magnetic force microscopy and vibrating sample magnetometer,” Journal of Applied Physics.107 (2010) 09A331 1-3.
[6] L. Zhang, H. Ye, Y. R. Huangfu, C. Zhang, and X. Liu, “Densely packed Ge quantum dots grown on SiO2/Si substrate,” Applied Surface Science 256 (2009) 768-772.
[7] G. E. Thompson, “Porous anodic alumina: Fabrication, characterization and applications,”Thin Solid Films 297 (1997)192-201.
[8] S. Sena, P. Kanitkarb, A. Sharmac, K. P. Muthea, A. Rathd,S. K. Deshpandee, M. Kaura, R. C. Aiyerb, S. K. Guptaa, and J. V. Yakhmi, “Growth of SnO2/W18O49 nanowire hierarchical heterostructure and their application as chemical sensor,” Sensors. Actuators B 147 (2010) 453-460.
[9] R. Rurali, M. Palummo, and X. Cartoixà1, “Convergence Study of Neutral and Charged Defect Formation Energies in Si Nanowires,” Physical Review B 81 (2010) 235304 1-6.
[10] H. W. Shim, D. K. Lee, I. S. Cho, K. S. Hong, and D. W. Kim, “Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries,” Nanotechnology 21 (2010) 255706 1-9.
[11] K. V. Klitzing, G. Dorda, and Pepper, ”New method for high-accuracy determination of the fine-structure constant base on quantized hall resistance,” Physical Review Letters 45 (1980) 494-497.
[12] 白春禮,“Nanometer scale science and technology,”凡異出版社
[13] A. J. Haes and R. P. Van, “A unified view of propagating and localized surface plasmon resonance biosensors,” Analytical and Bioanalytical Chemistry 379 (2004) 920-930
[14] E. Moulin, J. Sukmanowski, M. Schulte, A. Gordijn, F. X. Royer, H. Stiebig, “Thin-film silicon solar cells with integrated silver nanoparticles,” Thin Solid Films 516 (2008) 6813-6817
[15] M. N. Ou, T. J. Yang, S. R. Harutyunyan, Y. Y. Chen, C. D. Chen, and S. J. Lai, “Electrical and thermal transport in single nickel nanowire,” Applied Physics Letters 92 (2008) 063101.
[16] G. E. Moore, “Cramming more components onto integrated circuits,” Electronics Magazine 38 (1965) 56-59.
[17] D. Tomus, M. Qian,C. A. Bricec, and B. C. Muddlea, “Electron beam processing of Al–2Sc alloy for enhanced precipitation hardening,” Scripta Materialia 63 (2010) 151-154.
[18] T. Edura, H. Takahashi, M. Nakata, K. Tsutsui, K. Itaka, H. Koinuma, J.Mizunoa and Y. Wadaa, “Electrical characterization of single grain and single grain boundary of pentacene thin film by nano-scale electrode array,” Thin Solid Films 518 (2010) 2555-2561.
[19] V. Furin, A. Martucci, M. Guglielmi, C. C. Wong and F. Romanato, “Electrodeposition of CdSe on nanopatterned pillar arrays for photonic and photovoltaic applications,” Condensed Matter News vol. 6 (1998) 22-30.
[20] W. Chu, H. I. Smith and M. L. Schattenburg, “Replication of 50-nm-linewidth device patterns using proximityx‐ray lithography at large gaps,” Applied Physics Letters 59 (1991) 1641.
[21] R. Fabian Pease, “Semiconductor technology: Imprints offer moore,” Nature 417 (2002) 802-803.
[22] F. Dinelli, C. Menozzi, P. Baschieri, P. Facci, and P. Pingue, “Scanning probe nanoimprint lithography,” Nanotechnology 21 (2010) 075305 1-6.
[23] A. Pimpin and W. Srituravanich, “Review on micro- and nanolithography techniques and their applications,” Engineering Journal Vol 16 (2012) No 1.
[24] H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T. N. Rao, and A. Fujishima “Synthesis of well-aligned diamond nanocylinders,” Advanced Materials 13 (2001) 247.
[25] J. Byun, Y. Kim, G. Jeon, and J. K. Kim, “Ultrahigh density array of free-standing poly(3-hexylthiophene)nanotubes on conducting substrates via solution wetting,” Macromolecules 44 (2011) 8558-8562.
[26] X. Ren, C.H. Jiang , D.D. Li, L. He, “Fabrication of ZnO nanotubes with ultrathin wall by electrodeposition method,” Materials Letters 62 (2008) 3114-3116.
[27] F. Tao, M. Guan, Y. Jiang, J. Zhu, Z. Xu, and Z. Xue “An easy way to construct an ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template Method,” Advanced Materials 18 (2006) 2161-2164.
[28] J. H. Tian, J. Hu, F. Zhang, X. Li, J. Shi, J. Liu, Z. Q. Tian and Y. Chen, “Fabrication of high density metallic nanowires and nanotubes for cell culture studies,” Microelectronic Engineering 88 (2011) 1702-1706
[29] M. T. Wu, I. C. Leu, J. H. Yen, and M. H. Hon, “Preparation of Ni nanodot and nanowire arrays using porous alumina on silicon as a template without a conductive interlayer,” Electrochemical and Solid State Letters 7 (2004) C61
[30] X. W. Wang, Z. H. Yuan and B. C. Fanga, “Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters,” Materials Chemistry and Physics 125 (2011) 1-4
[31] A. A. Agrawal, B. J. Nehilla, K. V. Reisig, T. R. Gaborski, D. Z. Fang,C. C. Striemer, P. M. Fauchet, and J. L. McGrath, “Porous Nanocrystalline Silicon Membranes as Highly Permeable and Molecularly Thin Substrates for Cell Culture,” Biomaterials 31 (2010) 5408-5417.
[32] N. Chiboub, R. Boukherroub, N. Gabouze, S. Moulay, N. Naar, S. Lamouri, and S. Sam, “Covalent grafting of polyaniline onto aniline-terminated porous silicon,” Optical Materials 32 (2010) 748-752.
[33] P. N. Vinod, “Specific contact resistance and metallurgical process of the silver based paste for making ohmic contact structure on the porous silicon/p-Si surface of the silicon solar cell,” Journal of Materials Science Letters: Materials Electronic 21 (2010) 730-736.
[34] K. R. Wigginton and P. J. Vikesland, “Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection,”Analyst 135 (2010) 1320-1326.
[35] N. Baltes and J. Heinze, “Imaging local proton fluxes through a polycarbonateMembrane by using scanning electrochemical microscopyand Functionalized Alkanethiols,” Chemical Physics and Physical Chemistry 10 (2009) 174-179.
[36] Y. S. Li, F. Y. Liang, H. Bux, A. Feldhoff, W. S. Yang, and J. Caro, “Molecular sieve membrane: Supported metal-organic frameworkwith high hydrogen selectivity,” Angewandte Chemie International Edition 49 (2010) 548-551.
[37] D. Ramíreza, H. Gómeza, and D. Lincotb, “Polystyrene sphere monolayer assisted electrochemical deposition of ZnO nanorods with controlable surface density,” Electrochimica Acta 55 (2010) 2191-2195.
[38] C. P. Chang, C. C. Tseng, J. L. Ou, W. H. Hwu, and M. D. Ger, “Growth mechanism of gold nanoparticles decoratedon polystyrene spheres via self-regulated reduction,” Colloid and Polymer Science 288 (2010) 395-403.
[39] F. Keller, M. S. Hunter, and D. L. Robinson, “Structural features of oxide coatings on aluminum,” Journal of The Electrochemical Society 100 (1953) 411-419.
[40] L. Zaraska, G. D. Sulka, and M. Jaskuła, “The Effect of n-Alcohols on Porous Anodic Alumina Formed by Self-Organized Two-Step Anodizing of Aluminum in Phosphoric Acid,” Surface and Coatings Technology 204 (2010) 1729-1737.
[41] Z. W. Yao, M. J. Zheng, L. Ma, andW. Z. Shen, “The fabrication of ordered nanoporous metal films based on high field anodic alumina and their selected transmission enhancement,” Nanotechnology 19 (2008) 465705 1-7.
[42] L. Zaraska, G. D. Sulka, J. Szeremeta, and M. Jaskuła, “Porous Anodic Alumina Formed by Anodization of Aluminum Alloy (AA1050)and High Purity Aluminum,” Electrochimica Acta 55 (2010) 4377-4386.
[43] W. Lee, K. Nielsch, and U. Gösele, “Self-Ordering behavior of nanoporous anodic aluminum oxide (AAO) in malonic acid anodization,” Nanotechnology 18 (2007) 475713 1-8.
[44] R. Zhang, K. M. Jiang, and G. Q. Ding, “Surface Morphology Control on Porous Anodic Alumina in Phosphoric Acid,” Thin Solid Films 518 (2010) 3797-3800.
[45] K. H. Leea and C. C. Wong, “Decoupling Two-Step Anodization in Anodic Aluminum Oxide,” Journal of Applied Physics 106 (2009) 104305 1-3.
[46] Yong Lei, and Wai-Kin Chim, “Shape and size control of regularly arrayed nanodots fabricated using ultrathin alumina masks,” Chemistry Materials 17 (2005) 580-585.
[47] J. Ye, P. V. Dorpe, L. Lagae, G. Maes, andG. Borghs, “Observation of Plasmonic Dipolar Anti-Bonding Mode in Silver Nanoring Structures, ” Nanotechnology 20 (2009) 465203 1-6.
[48] O. Jessensky, F. Muller, and U. Gösele,“Self-organized formation of hexagonal pore arrays in anodic alumina,” Applied Physics Letters 72 (1998) 1173-1175.
[49] F. Li , L. Zhang and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chemistry of Materials 10 (1998) 2470-2480.
[50] H. Masudaand K. Fukuda, “Ordered metal nanohole Arrays by two-step replication of honeycombstructure of anodic alumina,” Science 268 (1995) 1466-1468.
[51] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters 71 (1997) 2770-2772.
[52] W. Lee, R. Ji, C. A. Ross, U. Gösele, and K. Nielsch, “Wafer-scale Ni imprint stamps for porous alumina membranes based on interference lithography,” Small 2 (2006) 978-982.
[53] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic Alumina,” Advence Materials Vol.13 (2001) 189-192.
[54] Y. Matsui, K. Nishio and H. Masuda, “Highly Ordered Anodic porous alumina by imprinting using Ni molds prepared from ordered array of polystyrene particles,” Japanese Journal of Applied Physics 44 (2005) 7726-7728.
[55] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam pre patterned aluminum Surfaces,” Applied Physics Letters 78 (2001)120-122.
[56] C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266 (1994) 1961–6.
[57] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycombstructures of anodic alumina,” Science 268 (1995) 1466-8.
[58] H. Masuda, F. Hasegwa and S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed insulfuric acid solution,” Journal of The Electrochemical Society 144 (1997) L127-30.
[59] O. Jessensky, F. Muller and U. Go¨sele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Applied Physics Letters 72 (1998) 1173-5.
[60] A. P. Li, F., A. Birner, K. Nielsch and U. Go¨sele, “Hexagonal pore arrays with a 50-420 nm interporedistance formed by self-organization in anodic alumina,” Journal of Applied Physics 84 (1998) 6023-6.
[61] C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chemistry Materials 8 (1996) 1739–46.
[62] D. Routkevitch, A. A Tager., J. Haruyama, D. Almawlawi, M. Moskovits and J. M. Xu, “Nonlithographic nano-wirearrays: fabrication, physics, and device applications,” IEEE Transactions on Electron Devices 43 (1996) 1646-58.
[63] H. Masuda, H. Yamada, M. Satoh and H. Asoh, “Highly ordered nanochannel-array architecture in anodicalumina,” Applied Physics Letters 71 (1997) 2770-2.
[64] J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of nanomaterials,” Journal of Materials Chemistry 7 (1997) 1075–87.
[65] F. Li, L. Zhang and R. M. Metzger “On the growth of highly ordered pores in anodized aluminum oxide,” Chemistry Materials 10 (1998) 2470-80.
[66] G. Gorokh, A. Mozalev, D. Solovei, V. Khatko, E. Llobet and X. Correig, “Anodic formation of low-aspect-ratio porous aluminafilms for metal-oxide sensor application,” Electrochimica Acta 52 (2006) 1771-1780.
[67] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi, “Two-dimensionalnanowirearrayformation on Si substrate using self-organized nanoholes of anodically oxidized aluminum,” Solid-State Electronics 43 (1999) 1143-1146.
[68] M. T. Rahman, N. N. Shams, and C. H. Lai, “Nonlithographic fabrication of 25 nm magnetic nanodot arrays with perpendicular anisotropy over a large area,” Journal of Applied Physics 105 (2009) 07C112.
[69] P. L. Chen, C. T. Kuo, T. G. Tsai, B. W. Wu and C. C. Hsu, “Self-organized titanium oxide nanodot arrays by electrochemicalanodization,” Applied Physics Letters 82 (2003) 2796.
[70] J. Liang, H. Chik, A. Yin, and J. Xu, “Two-dimensional lateral superlattices of nanostructures: Nonlithographic formation by anodic membrane template” Journal of Applied Physics 91 (2002) 2544.
[71] X. Y. Mei, D. Kim, H. E. Ruda and Q. X. Guo, “Molecular-beam epitaxial growth of GaAs and InGaAs/GaAsnanodot arrays using anodic Al2O3nanohole array template masks,” Applied Physics Letters 81 (2002) 361-3.
[72] X. Mei, M. Blumin, D. Kim, Z. Wu, H. and E. Ruda, “Molecular beam epitaxial growth studies of ordered GaAsnanodot arrays using anodic alumina masks,” Journal of Crystal Growth 251(2003) 253-7.
[73] X. Y. Mei, M. Blumin, M. Sun, D. Kim, Z. H. Wu, H. E. Ruda, “Highly ordered GaAs/AlGaAs quantum-dotarrays on GaAs (001) substrates grown by molecular-beam epitaxy using nanochannel alumina masks,” Applied Physics Letters 82 (2003) 967-9.
[74] N. Kouklin, H. , J. Liang, M. Tzolov, J. M. Xu and J. B. Heroux, ”Highly periodic, three-dimensionallyarranged InGaAsN:Sb quantum dot arrays fabricated nonlithographically for optical device,” Journal of Physics D: Applied Physics 36 (2003) 2634-8.
[75] K. Liu, J. Nogués, C. Leighton, H. Masuda, K. Nishio, and I. V. Roshchin, “Fabrication and thermal stability of arrays of Fe nanodots,” Applied Physics Letters 81(2002) 4434-6.
[76] Lei Y. and W. K. Chim, “Highly ordered arrays of metal/semiconductor core–shell nanoparticles with tunablenanostructures and photoluminescence,” Journal of the American Chemical Society 127(2005) 1487–92.
[77] Y. Lei, W. K. Chim, Sun H. P. and G. Wilde, “Highly ordered CdS nanoparticle arrays on silicon substrates andphotoluminescence properties,” Applied Physics Letters 86 (2005) 103106.
[78] Z. Chen, Y. Lei, H. G. Chew, L. W. Teo, W. K. Choi and W. K. Chim, “Synthesis of germanium nanodots on siliconusing an anodic alumina membrane mask,” Journal of Crystal Growth 268 (2004) 560-3.
[79] Y. Lei, W. K. Chim, J. Weissmueller, G. Wilde, H. P. Sun and X. Q. Pan, “Ordered arrays of highly oriented single-crystal semiconductor nanoparticles on silicon substrates,” Nanotechnology 16 (2005) 1892-8.
[80] S. M. Park, C. H. Bae, W. Nam, S. C. Park and J. S. Ha, “Array of luminescent Er-doped Si nanodots fabricated bypulsed laser deposition,” Applied Physics Letters 86 (2005) 023104.
[81] W. L. Xu, M. J. Zheng, G. Q. Ding and W. Z. Shen, “Fabrication and optical properties of highly ordered ZnOnanodot arrays,” Chemical Physics Letters 411 (2005) 37-42.
[82] P. A. Kossyrev, A. J. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang and P. M. Alsing, “Electric field tuning ofplasmonic response of nanodot array in liquid crystal matrix,” Nano Letters 5 (2005) 1978-81.
[83] G. S. Cheng and M. Moskovits, “A highly regular two-dimentional array of Au quantum dots deposited in aperiodically nanoporous GaAs epitaxial layer,” Advence Materials 14 (2002) 1567-70.
[84] J. Liang, H. Luo, R. Beresford and J. M. Xu, “A growth pathway for highly ordered quantum dot arrays,” Applied Physics Letters 85 (2004) 5974-6.
[85] J. Y. Liang, H. Chik, A. J. Yin and J. Xu, “Two-dimensional lateral superlattices of nanostructures: nonlithographicformation by anodic membrane template,” Journal of Applied Physics 91(2002) 2544-6.
[86] A. J. Bennett and J. M. Xu, “Simulating collective magnetic dynamics in nanodisk arrays,” Applied Physics Letters 82 (2003) 2503-5.
[87] Cloutier S. G., Guico R. S. and Xu J. M., “Phonon localization in periodic uniaxially nanostructured silicon,” Applied Physics Letters 87(2005) 222104.
[88] G. Q. Ding, W. Z. Shen, M. J. Zheng, W. L. Xu, He Y. L. and Q. X. Guo, “Fabrication of highly ordered nanocrystallineSi:H nanodots for the application of nanodevice arrays,” Journal of Crystal Growth 283 (2005) 339-45.
[89] S. H. Jeong, Y. K. Cha, I. K. Yoo, Y. S. Song and C. W. Chung, “Synthesis of Si nanostrutures via self-organized pillarmask,” Chemistry Materials 16 (2004) 1612-4.
[90] I. H. Park, J. W. Lee and C. W. Chung, “Formation of silicon nanodot arrays by reactive ion etching using self-assembled tantalum oxide mask.” Journal of Industrial and Engineering Chemistry 11 (2005) 590-3.
[91] A. Mozalev, M. Sakairi, I. Saeki and H. Takahashi, “Nucleation and growth of the nanostructured anodic oxideson tantalum and niobium under the porous alumina film,” Electrochimica Acta 48 (2003) 3155–70.
[92] A. Mozalev, A. Surganov and S. Magaino “Anodic process for forming nanostructured metal-oxide coatings forlarge-value precise microfilm resistor fabrication,” Electrochimica Acta 44 (1999) 3891–8.
[93] A. Mozalev, G. Gorokh, M. Sakairi and H. Takahashi, “The growth and electrical transport properties of self-organized metal/oxide nanostructures formed by anodizing Ta–Al thin-film bilayers,” Journal of Materials Science 40 (2005) 6399–407.
[94] H. Masuda, K. Yasui and K. Nishio, “Fabrication of ordered arrays of multiple nanodots using anodic porousalumina as an evaporation mask.” Advence Materials 12 (2000) 1031-3.
[95] B. Yan, H. T. M. Pham, M. Yue, Y. Zhuang, and P.M. Sarro, “Fabrication of in-situ ultra-thin anodic aluminum oxide layers for nanostructuring on silicon substrate”, Applied Physics Letters 91 (2007) 053117.
[96] J. Y. Son, Y. S. Shin, Y. H. Shin and H. M. Janga, “Fabrication of ultrathin Nb nanopin arrays,” Electrochemical and Solid-State Letters, 14 (3) (2001) D33-D35.
[97] G. Cao and D. Liu, “Template-based synthesis of nanorod, nanowire, and nanotube arrays,” Advances in Colloid and Interface Science 136 (2008) 45–64.
[98] X. Duan and C. M. Lieber, “General synthesis of compound semiconductor Nanowires,” Advence Materials 12 (2000) 298.
[99] W. Lu and C. M. Lieber, “Semiconductor nanowires,” Journal of Physics D: Applied Physics 39 (2006) R387-R406.
[100] H. J. Fan, P. Werner and M. Zacharias, ”Semiconductor Nanowires: From self-organization to patterned growth,” small No. 6 (2006) 700-717.
[101] Michael P. Zach, Kwok H. Ng and Reginald M. Penner, ”Molybdenum nanowires by electrodeposition,” Science 290 (2000) 2120
[102] C. Huang and Y. Hao, “The fabrication of short metallic nanotubes by templated electrodeposition, ” Nanotechnology 20 (2009) 445607 (7pp)
[103] F. Caruso, “Nanoengineering of particle surfaces,” Advence Material 13 (2001) 11.
[104] P. M. Ajayan, “Nanotubes from carbon,” Chemical Reviews 99 (1999) 1787.
[105] C. J. Brumlik andC. R. Martin, “Template synthesis of metal microtubules,” Journal of the American Chemical Society 113 (1991) 113.
[106] C. R. Martin, M. Nishizawa, K. Jirage and M. Kang, ”Rapid synthesis of carbon nanotubes by solid-state metathesis reactions,” The Journal of Physical Chemistry B 105 (2001) 1921-1924.
[107] S. Yu, S. B. Lee, M. Kang, and C. R. Martin, “Size-Based Protein Separations in Poly(ethylene glycol)-Derivatized Gold Nanotubule Membranes,”Nano Letter s 1 (2001) 495.
[108] C. J. Brumlik, C. R. Martin, “Template Synthesis of Metal Microtubules” Journal of the American Chemical Society 113 (1991) 3174-3175.
[109] M. Wirtz and C. R. Martin, “Template-Fabricated Gold Nanowires and Nanotubes” Advence Materials 15 (2003) 455.
[110] H. Q. Cao, L. D. Wang, Y. Qiu., Q. Z. Wu, G. W., L. Z., and X. W. Liu, “Generation and Growth Mechanism of Metal (Fe, Co, Ni) Nanotube Arrays,” Chemical Physics and Physical Chemistry 7 (2006) 1500-1504.
[111] G. Song, X. She, Z. Fu and J. Li, “Preparation of good mechanical property polystyrenenanotubes with array structure in anodic aluminum oxide template using simple physical techniques,” Journal of Materials Research 19 (2004) 11.
[112] O. Nakatsuka, K. Okubo, A. Sakai, S. Zaima and Y.Yasuda, ”Growthmechanism of epitaxial NiSi2 layer in the Ni/Ti/Si(001) contact for atomicallyflat interfaces,” IEEE (2004) 143-146.
[113] F. Tao, M. Guan, Y. Jiang, J. Zhu, Z. Xu and Z. Xue, “An easy way to construct an ordered array of nickel nanotubes:The triblock-copolymer-assisted hard-template method,” Advence Materials 18 (2006) 2161–2164.