跳到主要內容

簡易檢索 / 詳目顯示

研究生: 柯柏翰
Abraham Arimuko
論文名稱: 印尼地震學研究:從剪切波分裂和2006年日惹MW 6.3地震餘震模式分析蘇拉威西島下方各向異性
Seismological Studies in Indonesia: Anisotropy beneath Sulawesi from shear-wave splitting and aftershock patterns of the 2006 Yogyakarta MW 6.3 earthquake
指導教授: 陳伯飛
Po-Fei Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 125
中文關鍵詞: 各向異性剪切波餘震深度學習蘇拉威西-日惹
外文關鍵詞: anisotropy, shear-wave, aftershock, deep-learning, Sulawesi-Yogyakarta
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 印尼複雜的構造背景為研究地震各向異性與餘震行為提供了獨特的自然實驗室。本研究呈現兩項互補性的調查:其一聚焦於蘇拉威西島下方的剪切波分裂,另一則探討2006年日惹 Mw 6.3 地震後餘震的重新定位。
    蘇拉威西位於印度-澳洲板塊、巽他板塊與菲律賓海板塊的三重交會點,因此形成一個K字形的島嶼,周圍環繞著多個隱沒帶。我們利用印尼地震觀測網中69個寬頻地震站的資料,分析2021年至2024年間記錄到的遠震SK(K)S與區域性S波的剪切波分裂。事件篩選基於嚴格標準:震源深度大於等於100公里的區域性S波(濾波頻率0.1–1 Hz),以及震源矩規模Mw大於等於6.0的SK(K)S波相(濾波頻率0.02–0.2 Hz)。僅保留高品質的測量結果,其定義為極化角變異在±30°以內、延遲時間變異在±1秒以內,且Wüstefeld品質因子大於等於0.5。分析結果顯示,在蘇拉威西周圍的隱沒帶中,快速極化方向以與海溝平行為主,然而在如哥倫打洛灣與科洛火山附近,則呈現與海溝垂直的極化方向。這些異常反映了當地伸展性裂谷與火山活動等局部影響因素。主要斷層附近的測站顯示與斷層平行的極化方向,而多條構造交會處則呈現複雜的交錯型極化模式。若無明顯的局部應力源(如隱沒板塊或斷層),則較厚的各向異性地殼會展現更強的剪切波分裂,提供了蘇拉威西下方岩石圈變形與地函流動的重要新見解。
    在爪哇島,2006年Mw 6.3日惹地震的震中與餘震分布偏離了Opak斷層東側,因此對其斷層來源產生疑問。以往對該斷層傾角方向的解釋不一。為釐清此議題,我們應用一種基於深度學習的自動拾取方法來分析P波與S波的到時,結果比傳統技術更具一致性。我們首先利用網格搜尋法估計絕對震源位置,接著更新區域速度模型以進行更準確的地震重新定位。重新定位後的餘震分布顯示,在主震東側的地震發生於較深位置,而西側的地震則較淺。根據Global CMT震源機制所進行的庫倫應力變化分析顯示,西側淺層餘震區域與正的應力變化相對應。這項結果支持主震為一條傾向西方、名為Ngalang斷層的構造所破裂的假設,而該斷層位於Opak斷層的東側。
    總結而言,這兩項研究突顯了印尼地區地震過程的多樣性——從蘇拉威西隱沒與地函動力主導的地殼各向異性,到中爪哇地區的斷層複雜性與應力互動。兩者皆展現了先進分析技術與密集地震網絡整合的潛力,以提升我們對本區構造行為與地震災害的理解。


    Indonesia's complex tectonic setting provides a unique natural laboratory for studying seismic anisotropy and aftershock behavior. This study presents two complementary investigations: one focusing on shear-wave splitting beneath Sulawesi, and the other on aftershock relocation following the 2006 Yogyakarta MW 6.3 earthquake.
    Sulawesi lies at the triple junction of the Indian-Australian, Sunda, and Philippine Sea plates, resulting in a K-shaped island surrounded by multiple subduction zones. Using data from 69 broadband stations in the Indonesian seismic network, we analyzed shear-wave splitting of teleseismic SK(K)S and local S-waves recorded between 2021 and 2024. Event selection was based on strict criteria: local S-waves from earthquakes ≥100 km deep (filtered at 0.1–1 Hz) and SK(K)S phases from MW ≥ 6.0 events (filtered at 0.02–0.2 Hz). Only high-quality measurements—defined by polarization angle variation ≤ ±30°, delay time variation ≤ ±1 s, and a Wüstefeld quality factor ≥ 0.5—were retained. The results reveal predominantly trench-parallel fast polarization directions along surrounding subduction zones, with trench-normal orientations observed in areas such as Gorontalo Bay and near Colo Volcano. These anomalies suggest local influences such as extensional rifting and volcanic processes. Fault-parallel patterns were observed near major fault zones, while complex cross-patterns emerged where multiple tectonic features intersect. Thicker anisotropic crust without significant local stress sources exhibited stronger shear-wave splitting, offering new insights into the lithospheric deformation and mantle flow beneath Sulawesi.
    In Java, the 2006 MW 6.3 Yogyakarta earthquake posed questions regarding its fault origin due to its epicenter and aftershock distribution, which deviated eastward from the Opak Fault. Previous interpretations varied on the fault dip direction. To clarify this, we applied a deep learning-based picking method to analyze P and S wave arrivals, providing higher consistency than traditional techniques. Absolute hypocenter locations were first estimated using a grid-search method, followed by updates to the local velocity model for more accurate event relocation. The refined aftershock distribution revealed deeper events east of the mainshock and shallower ones to the west. Coulomb stress change analysis, based on Global CMT focal mechanisms, showed that the shallow western aftershocks correlated with areas of positive stress change. This supports the hypothesis that the mainshock ruptured a west-dipping structure known as the Ngalang Fault, located east of the Opak Fault.
    Together, these studies highlight the diversity of seismic processes across Indonesia—from crustal anisotropy shaped by subduction and mantle dynamics in Sulawesi to fault complexity and stress interactions in central Java. Both demonstrate the power of integrating advanced analysis techniques with dense seismic networks to improve our understanding of the region's tectonic behavior and seismic hazards.

    Table of Contents 摘要 i Abstract iii Acknowledgments v Table of Contents vi List of Figures ix List of Tables xi CHAPTER I: INTRODUCTION 1 1.1 General Background and Motivation 1 1.1.1 Shear-wave splitting of Sulawesi 2 1.1.2 Aftershock of 2006 Yogyakarta Earthquake 6 1.2 Objectives and structure of the thesis 7 1.2.1 Shear-wave splitting of Sulawesi 7 1.2.2 Aftershock of 2006 Yogyakarta Earthquake 7 CHAPTER II: LITERATURE REVIEW 9 2.1 Tectonic of Sulawesi 9 2.2 Anisotropic Medium 11 2.3 Shear-wave Splitting 15 2.4 Previous Studies 2006 Yogyakarta MW 6.3 17 CHAPTER III: DATA AND METHODS 19 3.1 Data of Shear-wave Splitting 19 3.1.1 Data Description 19 3.1.2 Preparation of Data for Processing 23 3.2 Methods of Shear-wave Splitting 27 3.2.1 Determining Shear-wave Splitting 27 3.2.2 Coordinate Systems 28 3.2.3 Finding Splitting Parameters (\phi,\delta t) 32 3.2.4 SWSPY Program 38 3.3 Data of Auto-picking 41 3.3.1 Temporary Seismic Network 41 3.3.2 Preparation of Data for Processing 42 3.4 Methods of Auto-picking 43 3.4.1 Auto-picking P- and S-wave 43 3.4.2 Determining the Hypocenter 45 3.4.3 Calculate the Magnitude 47 3.4.4 Updating Velocity Model and Relocating 48 3.4.5 Clustering and Relocating the Hypocenter as Final Catalog 49 3.4.6 Coulomb Stress Change 50 CHAPTER IV: RESULTS AND DISCUSSION 52 4.1 Results of Shear-wave Splitting 52 4.2 Discussion of Shear-wave Splitting 60 4.2.1 Lithosphere-scale Deformation and Local Stress 60 4.2.2 Subduction System and Shallow Mantle Flow 73 4.3 Result of Auto-picking 75 4.3.1 Auto-pick P- and S-wave 75 4.3.2 Determining the Hypocenter 75 4.3.3 Calculating the Local Magnitude 76 4.3.4 Updating Velocity Model and Relocating 77 4.3.5 Clustering and Relocating the Hypocenter as Final Catalog 79 4.3.6 Coulomb Stress Change 80 4.4 Discussion of Auto-picking 81 4.4.1 Recalling Rate of Earthquake Detection 81 4.4.2 Local Magnitude Determination 83 4.4.3 Corresponding to Geological Features 85 CHAPTER V: SUMMARY 89 5.1 Conclusions of Shear-wave Splitting 89 5.2 Future Works of Shear-wave Splitting 90 5.2.1 Temporal Variation and Seismic Cycle Monitoring 90 5.2.2 Integration with Geodetic and Geochemical Data 90 5.3 Conclusions of Auto-picking 91 5.4 Future Works of Auto-picking 92 5.4.1 Moment tensor inversion 92 5.4.2 Small Earthquake Behavior 92 Bibliographies 93 Appendix A 108 Appendix B 109

    Bibliographies
    Agius, M. R., & Lebedev, S. (2017). Complex, multilayered azimuthal anisotropy beneath Tibet: Evidence for co-existing channel flow and pure-shear crustal thickening. Geophysical Journal International, 210(3), 1823-1844. https://doi.org/10.1093/gji/ggx266
    Ando, M. (1984). ScS polarization anisotropy around the Pacific Ocean. Journal of Physics of the Earth, 32: 179-196
    Anikiev, D., Birnie, C., Waheed, U. B., Alkhalifah, T., Gu, C., Verschuur, D. J., & Eisner, L. (2023). Machine learning in microseismic monitoring. Earth-Science Reviews, 239, 104371. https://doi.org/10.1016/j.earscirev.2023.104371
    Appini, S., Li, J., Hu, H., Creasy, N., Thomsen, L., McNease, J., & Zheng, Y. (2025). Prediction of Complex Observed Shear Wave Splitting Patterns at Ryukyu Subduction Zone Using a Strong Intra-Slab Anisotropy Model. Geophysical Research Letters, 52(3), e2024GL111131. https://doi.org/10.1029/2024GL111131
    Balfour, N. J., Cassidy, J. F., & Dosso, S. E. (2011). Crustal anisotropy in the forearc of the Northern Cascadia Subduction Zone, British Columbia. Geophysical Journal International, 188(1), 165-176. https://doi.org/10.1111/j.1365-246X.2011.05231.x
    Barruol, G., & Kern, H. (1996). Seismic anisotropy and shear-wave splitting in lower-crustal and upper-mantle rocks from the Ivrea Zone—Experimental and calculated data. Physics of the Earth and Planetary Interiors, 95(3-4), 175-194. https://doi.org/10.1016/0031-9201(95)03124-3
    Blackman, D. K., & Kendall, M. (2002). Seismic anisotropy in the upper mantle 2. Predictions for current plate boundary flow models. Geochemistry, Geophysics, Geosystems, 3(9), 1 of 26-26 of 26. https://doi.org/10.1029/2001GC000247
    Blaser, L., Krüger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America, 100(6), 2914-2926.
    Bormann, P. (Ed.). (2002). New manual of seismological observatory practice: (NMSOP). 2. Annexes, Volume 2. GeoForschungsZentrum.
    Bowman, J. R., & Ando, M. (1986). Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophysical Journal International, 88(1), 25-41. https://doi.org/10.1111/j.1365-246X.1987.tb01367.x
    Buland, R., & Chapman, C. H. (1983). The computation of seismic travel times. Bulletin of the Seismological Society of America, 73(5), 1271–1302
    Camplin, D. J., & Hall, R. (2014). Neogene history of Bone Gulf, Sulawesi, Indonesia. Marine and Petroleum Geology, 57, 88-108. https://doi.org/10.1016/j.marpetgeo.2014.04.014
    Cao, L., Lü, C., He, X., Rawlinson, N., Hao, T., Widiyantoro, S., Supendi, P., Zhao, L., Yuan, H., Zhao, M., Qiu, X., Rafie, M. T., Alfian, A., & Sahara, D. P. (2024a). Mantle Flow Induced by the Interplay of Downgoing Slabs Revealed by Seismic Anisotropy Beneath the Sula Block in Eastern Indonesia. Journal of Geophysical Research: Solid Earth, 129(5), e2023JB028110. https://doi.org/10.1029/2023JB028110
    Cao, L., He, X., Yuan, H., Zhao, M., Qiu, X., & Savage, M. K. (2024b). Upper-mantle seismic anisotropy in the southwestern North Island, New Zealand: Implications for regional upper-mantle and slab deformation. Tectonophysics, 887, 230455. https://doi.org/10.1016/j.tecto.2024.230455
    Chang, J., G. Ferreira, A. M., Ritsema, J., & Woodhouse, J. H. (2015). Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations. Journal of Geophysical Research: Solid Earth, 120(6), 4278-4300. https://doi.org/10.1002/2014JB011824
    Chen, P., Chien, M., Bina, C. R., Yen, H., & Antonio Olavere, E. (2020). Evidence of an east-dipping slab beneath the southern end of the Philippine Trench (1°N–6°N) as revealed by ISC-EHB. Journal of Asian Earth Sciences: X, 4, 100034. https://doi.org/10.1016/j.jaesx.2020.100034
    Chevrot, S. (2000). Multichannel analysis of shear wave splitting. Journal of Geophysical Research: Solid Earth, 105(B9), 21579-21590. https://doi.org/10.1029/2000JB900199
    Cocco, M., & Rice, J. R. (2002). Pore pressure and poroelasticity effects in Coulomb stress analysis of earthquake interactions. Journal of Geophysical Research: Solid Earth, 107(B2), ESE 2-1-ESE 2-17. https://doi.org/10.1029/2000JB000138
    Crampin, S. (1989). Suggestions for a consistent terminology for seismic anisotropy. Geophysical Prospecting, 37(7), 753-770. https://doi.org/10.1111/j.1365-2478.1989.tb02232.x
    Crampin, S., Evans, R., & Atkinson, B. K. (1983). Earthquake prediction: A new physical basis. Geophysical Journal International, 76(1), 147-156. https://doi.org/10.1111/j.1365-246X.1984.tb05030.x
    Di Leo, J. F., Wookey, J., Hammond, J. O. S., Kendall, J. M., Kaneshima, S., Inoue, H., Yamashina, T., & Harjadi, P. (2012b). Mantle flow in regions of complex tectonics: Insights from Indonesia. Geochemistry, Geophysics, Geosystems, 13(12), Q12008. https://doi.org/10.1029/2012gc004417
    Di Leo, J. F., Wookey, J., Hammond, J.O.S., Kendall, J. M., Kaneshima, S., Inoue, H., Yamashina, T., & Harjadi, P. (2012a). Deformation and mantle flow beneath the Sangihe subduction zone from seismic anisotropy. Physics of the Earth and Planetary Interiors, 194–195, 38–54. https://doi.org/10.1016/j.pepi.2012.01.008
    Diambama, A. D., Anggraini, A., Nukman, M., Lühr, B., & Suryanto, W. (2018). Velocity structure of the earthquake zone of the M6.3 Yogyakarta earthquake 2006 from a seismic tomography study. Geophysical Journal International, 216(1), 439-452. https://doi.org/10.1093/gji/ggy430
    Dirgantara, F., Susilohadi, S., Suyanto, I., & Iskandar, M. A. S. (2025). Subsurface thermal properties in the deepwater South Makassar Basin, Indonesia. Journal of Asian Earth Sciences, 290, 106651. https://doi.org/10.1016/j.jseaes.2025.106651
    Dong, M., Lü, C., Zhang, J., & Hao, T. (2022). Downgoing Plate-Buoyancy Driven Retreat of North Sulawesi Trench: Transition of a Passive Margin Into a Subduction Zone. Geophysical Research Letters, 49(23), e2022GL101130. https://doi.org/10.1029/2022GL101130
    Durand, S., Abreu, R., & Thomas, C. (2018). SeisTomoPy: Fast visualization, comparison, and calculations in global tomographic models. Seismological Research Letters, 89(2A), 658–667. https://doi.org/10.1785/0220170142
    Dziewonski, A. M., Chou, T. A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/jb086ib04p02825
    Ekström, G., Nettles, M., & Dziewoński, A. (2012). The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002
    Fouch, M. J., & Rondenay, S. (2006). Seismic anisotropy beneath stable continental interiors. Physics of the Earth and Planetary Interiors, 158(2-4), 292-320. https://doi.org/10.1016/j.pepi.2006.03.024
    French, S. W., & Romanowicz, B. A. (2014). Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophysical Journal International, 199(3), 1303-1327. https://doi.org/10.1093/gji/ggu334
    Godang, S., Saputro, S. P., & Li, H. (2024). The slab failure in Central Java (Indonesia): New insight into its tectonic setting and origin. Solid Earth Sciences, 9(3), 100199. https://doi.org/10.1016/j.sesci.2024.100199
    Goldberg, D. E., Koch, P., Melgar, D., Riquelme, S. & Yeck, W. L. (2022). Beyond the teleseism: introducing regional seismic and geodetic data into routine USGS finite‐fault modeling. Seismological Research Letters, 93(6), 3308-3323. https://doi.org/10.1785/0220220047
    Greenfield, T., Copley, A. C., Caplan, C., Supendi, P., Widiyantoro, S., & Rawlinson, N. (2021). Crustal Deformation and Fault Strength of the Sulawesi Subduction Zone. Tectonics, 40(3), e2020TC006573. https://doi.org/10.1029/2020TC006573
    Hall, R. (2012). Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics, 570–571, 1–41. https://doi.org/10.1016/j.tecto.2012.04.021
    Hall, R. (2018). The subduction initiation stage of the Wilson cycle. Geological Society, London, Special Publications, 470(1), 415–437. https://doi.org/10.1144/sp470.3
    Hall, R., & Spakman, W. (2015). Mantle structure and tectonic history of SE Asia. Tectonophysics, 658, 14–45. https://doi.org/10.1016/j.tecto.2015.07.003
    Hall, R., & Wilson, M. (2000). Neogene sutures in eastern Indonesia. Journal of Asian Earth Sciences, 18(6), 781–808. https://doi.org/10.1016/s1367-9120(00)00040-7
    Hamilton, W. B. (1979). Tectonics of the Indonesian region. Professional Paper. (1078). Washington, DC: U.S. Geological Survey. https://doi.org/10.3133/pp1078
    Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. https://doi.org/10.1126/science.aat4723
    Hein, G., Kolínský, P., Bianchi, I., Bokelmann, G., Group, A. W., Hetényi, G., Abreu, R., Allegretti, I., Apoloner, M., Aubert, C., Besançon, S., Bokelmann, G., Brunel, D., Capello, M., Čarman, M., Cavaliere, A., Chéze, J., Chiarabba, C., Clinton, J., . . . Žlebčíková, H. (2021). Shear wave splitting in the Alpine region. Geophysical Journal International, 227(3), 1996-2015. https://doi.org/10.1093/gji/ggab305
    Heryandoko, N., Nugraha, A. D., Zulfakriza, Z., et al. (2024b). Crustal thickness variation of Kalimantan and Sulawesi region from teleseismic receiver function. Journal of Seismology, 28, 879–898. https://doi.org/10.1007/s10950-024-10220-9
    Heryandoko, N., Nugraha, A. D., Zulfakriza, Z., Rosalia, S., Yudistira, T., Rohadi, S., Daryono, D., Supendi, P., Nurpujiono, N., Yusuf, F., Fauzi, F., Lesmana, A., Husni, Y. M., Prayitno, B. S., Triyono, R., Adi, S. P., Karnawati, D., Greenfield, T., Rawlinson, N., . . . Widiyantoro, S. (2024a). Crustal structure of Borneo, Makassar Strait and Sulawesi from ambient noise tomography. Geophysical Journal International, 237(2), 949-964. https://doi.org/10.1093/gji/ggae085
    Honthaas, C., Réhault, J., Maury, R. C., Bellon, H., Hémond, C., Malod, J., Cornée, J., Villeneuve, M., Cotten, J., Burhanuddin, S., Guillou, H., & Arnaud, N. (1998). A Neogene back-arc origin for the Banda Sea basins: Geochemical and geochronological constraints from the Banda ridges (East Indonesia). Tectonophysics, 298(4), 297-317. https://doi.org/10.1016/S0040-1951(98)00190-5
    Huang, C., Chen, W., Wang, M., Lin, C., Yang, S., Li, X., Yu, M., Zhao, X., Yang, K., Liu, C., Hsieh, Y., & Harris, R. (2018). Juxtaposed sequence stratigraphy, temporal-spatial variations of sedimentation and development of modern-forming forearc Lichi Mélange in North Luzon Trough forearc basin onshore and offshore eastern Taiwan: An overview. Earth-Science Reviews, 182, 102-140. https://doi.org/10.1016/j.earscirev.2018.01.015
    Huang, H., Meng, L., Bürgmann, R., Wang, W., & Wang, K. (2020). Spatio-temporal foreshock evolution of the 2019 M 6.4 and M 7.1 Ridgecrest, California earthquakes. Earth and Planetary Science Letters, 551, 116582. https://doi.org/10.1016/j.epsl.2020.116582
    Hudson, T. S., Asplet, J., & Walker, A. M. (2023). Automated shear-wave splitting analysis for single- and multi- layer anisotropic media. Seismica, 2(2). https://doi.org/10.26443/seismica.v2i2.1031
    Hutchings, S. J., & Mooney, W. D. (2021). The Seismicity of Indonesia and Tectonic Implications. Geochemistry, Geophysics, Geosystems, 22(9), e2021GC009812. https://doi.org/10.1029/2021GC009812
    Hutton, L. K., & Boore, D. M. (1987). The ML scale in Southern California. Bulletin of the Seismological Society of America, 77(6), 2074–2094. https://doi.org/10.1785/BSSA0770062074
    Irsyam, M., Cummins, P. R., Asrurifak, M., Faizal, L., Natawidjaja, D. H., Widiyantoro, S., Meilano, I., Triyoso, W., Rudiyanto, A., Hidayati, S., Ridwan, M., Hanifa, N. R., & Syahbana, A. J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, 36(1_suppl), 112–136. https://doi.org/10.1177/8755293020951206
    Jaya, A. (2014). Tectonic Evolution of South Sulawesi, Indonesia: Reconstructed by Analysis of Deformation Structures (Doctoral dissertation). Retrieved from Akita University Institutional Repository System. (https://air.repo.nii.ac.jp). Akita: Akita University.
    Jiang, E., Liu, K. H., Gao, Y., Fu, X., & Gao, S. S. (2021). Spatial Variations of Upper Crustal Anisotropy Along the San Jacinto Fault Zone in Southern California: Constraints From Shear Wave Splitting Analysis. Journal of Geophysical Research: Solid Earth, 126(4), e2020JB020876. https://doi.org/10.1029/2020JB020876
    Jung, H., Katayama, I., Jiang, Z., Hiraga, T., & Karato, S. (2006). Effect of water and stress on the lattice-preferred orientation of olivine. Tectonophysics, 421(1-2), 1-22. https://doi.org/10.1016/j.tecto.2006.02.011
    Jung, S., Jung, H., & Austrheim, H. (2020). Microstructural Evolution of Amphibole Peridotites in Åheim, Norway, and the Implications for Seismic Anisotropy in the Mantle Wedge. Minerals, 10(4), 345. https://doi.org/10.3390/min10040345
    Karato, S.-I., Jung, H., Katayama, I., & Skemer, P. (2008). Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies. Annual Review of Earth and Planetary Sciences, 36, 59–95. https://doi.org/10.1146/annurev.earth.36.031207.124120
    Karlowska, E., Bastow, I. D., Rondenay, S., & Allen, R. M. (2021). The development of seismic anisotropy below south-central Alaska: Evidence from local earthquake shear wave splitting. Geophysical Journal International, 225(1), 548-554. https://doi.org/10.1093/gji/ggaa603
    Kendall, J., Stuart, G. W., Ebinger, C. J., Bastow, I. D., & Keir, D. (2004). Magma-assisted rifting in Ethiopia. Nature, 433(7022), 146-148. https://doi.org/10.1038/nature03161
    Kendall, J.-M., Pilidou, S., Keir, D., Bastow, I. D., Stuart, G. W., & Ayele, A. (2006). Mantle upwellings, melt migration, and the rifting of Africa: Insights from seismic anisotropy. Geological Society, London, Special Publications, 259, 55–72. https://doi.org/10.1144/GSL.SP.2006.259.01.06
    Kennett, B. L., & Furumura, T. (2019). Significant P wave conversions from upgoing S waves generated by very deep earthquakes around Japan. Progress in Earth and Planetary Science, 6(1), 1-11. https://doi.org/10.1186/s40645-019-0292-z
    Kennett, B. L., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122(1), 108-124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x
    King, G. C. P., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953. https://doi.org/10.1785/BSSA0840030935
    Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research: Solid Earth, 99(B10), 19635-19646. https://doi.org/10.1029/93JB03138
    Ko, B., & Jung, H. (2015). Crystal preferred orientation of an amphibole experimentally deformed by simple shear. Nature Communications, 6(1), 1-10. https://doi.org/10.1038/ncomms7586
    Koulakov, I., Bohm, M., Asch, G., Lühr, G., Manzanares, A., Brotopuspito, K. S., Fauzi, P., Purbawinata, M. A., Puspito, N. T., Ratdomopurbo, A., Kopp, H., Rabbel, W., & Shevkunova, E. (2007). P and S velocity structure of the crust and the upper mantle beneath central Java from local tomography inversion. Journal of Geophysical Research: Solid Earth, 112(B8). https://doi.org/10.1029/2006JB004712
    Koulali, A., McClusky, S., Susilo, S., Leonard, Y., Cummins, P., Tregoning, P., Meilano, I., Efendi, J., & Wijanarto, A. (2017). The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning. Earth and Planetary Science Letters, 458, 69-79. https://doi.org/10.1016/j.epsl.2016.10.039
    Li, J., Ding, W., Lin, J., Xu, Y., Kong, F., Li, S., Huang, X., & Zhou, Z. (2021). Dynamic processes of the curved subduction system in Southeast Asia: A review and future perspective. Earth-Science Reviews, 217, 103647. https://doi.org/10.1016/j.earscirev.2021.103647
    Li, Y., Lei, J., Huang, J., & Zhao, D. (2025). Pn Velocity Structure and Anisotropy of the Uppermost Mantle Beneath Southeast Asia. Journal of Geophysical Research: Solid Earth, 130(6), e2025JB031116. https://doi.org/10.1029/2025JB031116
    Librian, V., Ramdhan, M., Nugraha, A. D., Mukti, M. M., Syuhada, S., Lühr, B., Widiyantoro, S., Mursitantyo, A., Anggraini, A., Zulfakriza, Z., Muttaqy, F., & Mi'rojul Husni, Y. (2024). Detailed seismic structure beneath the earthquake zone of Yogyakarta 2006 (MW ∼6.4), Indonesia, from local earthquake tomography. Physics of the Earth and Planetary Interiors, 351, 107170. https://doi.org/10.1016/j.pepi.2024.107170
    Liu, C., & Ritzwoller, M. H. (2024). Seismic Anisotropy and Deep Crustal Deformation Across Alaska. Journal of Geophysical Research: Solid Earth, 129(5), e2023JB028525. https://doi.org/10.1029/2023JB028525
    Lloyd, G. E., Butler, R. W. H., Casey, M., Tatham, D. J., & Mainprice, D. (2012). Constraints on the seismic properties of the middle and lower continental crust. Geological Society, London, Special Publications, 360, 7–32. https://doi.org/10.1144/SP360.2
    Lomax, A., Michelini, A., & Curtis, A. (2009). Earthquake location, direct, global-search methods. Encyclopedia of Complexity and Systems Science, 5, 2449-2473
    Long, M. D., & Becker, T. W. (2010). Mantle dynamics and seismic anisotropy. Earth and Planetary Science Letters, 297(3-4), 341-354. https://doi.org/10.1016/j.epsl.2010.06.036
    Long, M. D., & Silver, P. G. (2009). Shear wave splitting and mantle anisotropy: Measurements, interpretations, and new directions. Surveys in Geophysics, 30, 407–461. https://doi.org/10.1007/s10712-009-9075-1
    Lou, X., van der Lee, S., & Lloyd, S. (2013). AIMBAT: A Python/Matplotlib tool for measuring teleseismic arrival times. Seismological Research Letters, 84(1), 85–93. https://doi.org/10.1785/0220120033
    Mahan, K. (2006). Retrograde mica in deep crustal granulites: Implications for crustal seismic anisotropy. Geophysical Research Letters, 33(24). https://doi.org/10.1029/2006GL028130
    Mainprice, D., & Nicolas, A. (1988). Development of shape and lattice preferred orientations: Application to the seismic anisotropy of the lower crust. Journal of Structural Geology, 11(1-2), 175-189. https://doi.org/10.1016/0191-8141(89)90042-4
    Maupin, V., and J. Park (2015), 1.09—Theory and observations—Seismic anisotropy, in Treatise on Geophysics, 2nd ed., edited by G. Schubert, pp. 277–305, Elsevier, Oxford, U. K.
    Mégnin, C., & Romanowicz, B. (1999). The effects of the theoretical formalism and data selection on mantle models derived from waveform tomography. Geophysical Journal International, 138(2), 366-380. https://doi.org/10.1046/j.1365-246X.1999.00869.x
    Nichols, G., & Hall, R. (1999). History of the Celebes Sea Basin based on its stratigraphic and sedimentological record. Journal of Asian Earth Sciences, 17(1-2), 47-59. https://doi.org/10.1016/S0743-9547(98)00034-8
    Nishizawa, O., & Kanagawa, K. (2010). Seismic velocity anisotropy of phyllosilicate-rich rocks: Characteristics inferred from experimental and crack-model studies of biotite-rich schist. Geophysical Journal International, 182(1), 375-388. https://doi.org/10.1111/j.1365-246X.2010.04614.x
    Patria, A., Natawidjaja, D. H., Daryono, M. R., Hanif, M., Puji, A. R., & Tsutsumi, H. (2023). Tectonic landform and paleoseismic events of the easternmost Matano fault in Sulawesi, Indonesia. Tectonophysics, 852, 229762. https://doi.org/10.1016/j.tecto.2023.229762
    Pawirodikromo, W., 2012. Seismologi Teknik dan Rekayasa Kegempaan. Pustaka Pelajar, Yogyakarta.
    Pholbud, P., Hall, R., Advokaat, E., Burgess, P.M., Rudyawan, A., 2012. A new interpretation of Gorontalo Bay, Sulawesi. In: Indonesian Petroleum Association Proceedings 36th Annual Convention, IPA 12-G-039, pp. 1–23
    Ramdhan, M., Palgunadi, K. H., Mukti, M. M., Librian, V., Daniarsyad, G., Muttaqy, F., Hidayat, E., Syuhada, S., Hanif, M., Mursitantyo, A., Lühr, B.-G., Nugraha, A. D., Widiyantoro, S., Setyonegoro, W., & Febriani, F. (2025). Aftershock sequence of the Yogyakarta earthquake 2006 (Mw ~ 6.4), Indonesia, based on analysis of hypocenter relocation, static, and dynamic stress. Natural Hazards. https://doi.org/10.1007/s11069-025-07440-8
    Restivo, A., & Helffrich, G. (1999). Teleseismic shear wave splitting measurements in noisyenvironments. Geophysical Journal International, 137(3), 821-830. https://doi.org/10.1046/j.1365-246x.1999.00845.x
    Ritsema, J., Deuss, A., Van Heijst, H. J., & Woodhouse, J. H. (2011). S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184(3), 1223-1236. https://doi.org/10.1111/j.1365-246X.2010.04884.x
    Saputra, H., Wahyudi, W., Suardi, I., et al. (2021). The waveform inversion of mainshock and aftershock data of the 2006 M6.3 Yogyakarta earthquake. Geoscience Letters, 8, 9. https://doi.org/10.1186/s40562-021-00176-w
    Savage, M. K., Wessel, A., Teanby, N. A., & Hurst, A. W. (2010). Automatic measurement of shear wave splitting and applications to time varying anisotropy at Mount Ruapehu volcano, New Zealand. Journal of Geophysical Research: Solid Earth, 115(B12). https://doi.org/10.1029/2010JB007722
    Schellart, W., & Spakman, W. (2015). Australian plate motion and topography linked to fossil New Guinea slab below Lake Eyre. Earth and Planetary Science Letters, 421, 107-116. https://doi.org/10.1016/j.epsl.2015.03.036
    Schlaphorst, D., Silveira, G., Mata, J., Krüger, F., Dahm, T., & Ferreira, A. M. (2022). Heterogeneous seismic anisotropy beneath Madeira and Canary archipelagos revealed by local and teleseismic shear wave splitting. Geophysical Journal International, 233(1), 510-528. https://doi.org/10.1093/gji/ggac472
    Serhalawan, Y., & Chen, P. (2024). Seismotectonics of Sulawesi, Indonesia. Tectonophysics, 883, 230366. https://doi.org/10.1016/j.tecto.2024.230366
    Silver, P. G., & Chan, W. W. (1991). Shear wave splitting and subcontinental mantle deformation. Journal of Geophysical Research: Solid Earth, 96(B10), 16429-16454. https://doi.org/10.1029/91JB00899
    Simmons, N. A., Myers, S. C., Johannesson, G., & Matzel, E. (2012). LLNL-G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction. Journal of Geophysical Research: Solid Earth, 117(B10). https://doi.org/10.1029/2012JB009525
    Socquet, A., Simons, W., Vigny, C., McCaffrey, R., Subarya, C., Sarsito, D., Ambrosius, B., & Spakman, W. (2006). Microblock rotations and fault coupling in SE Asia triple junction (Sulawesi, Indonesia) from GPS and earthquake slip vector data. Journal of Geophysical Research, 111(B8), B08409. https://doi.org/10.1029/2005jb003963
    Song, T., Hao, T., Zhang, J., Cao, L., & Dong, M. (2022). Numerical modeling of North Sulawesi subduction zone: Implications for the east–west differential evolution. Tectonophysics, 822, 229172. https://doi.org/10.1016/j.tecto.2021.229172
    Spakman, W., & Hall, R. (2010). Surface deformation and slab–mantle interaction during Banda arc subduction rollback. Nature Geoscience, 3(8), 562–566. https://doi.org/10.1038/ngeo917
    Supendi, P., Rawlinson, N., Han, J., Widiyantoro, S., Pilia, S., Nugraha, A. D., & Karnawati, D. (2025). Evidence of Magma Reservoirs Beneath Volcanoes in Northern Sulawesi and the Molucca Sea From Regional Earthquake Tomography. Geophysical Research Letters, 52(3), e2024GL110794. https://doi.org/10.1029/2024GL110794
    Supendi, P., Rawlinson, N., Prayitno, B. S., Sianipar, D., Simanjuntak, A., Widiyantoro, S., Palgunadi, K. H., Kurniawan, A., Shiddiqi, H. A., Nugraha, A. D., Sahara, D. P., Daryono, D., Triyono, R., Adi, S. P., Karnawati, D., Daniarsyad, G., Ahadi, S., Fatchurochman, I., Anugrah, S. D., . . . Sudrajat, A. (2023a). A previously unidentified fault revealed by the February 25, 2022 (MW 6.1) Pasaman Earthquake, West Sumatra, Indonesia. Physics of the Earth and Planetary Interiors, 334, 106973. https://doi.org/10.1016/j.pepi.2022.106973
    Supendi, P., Rawlinson, N., Prayitno, B. S., Widiyantoro, S., Simanjuntak, A., Palgunadi, K. H., Kurniawan, A., Marliyani, G. I., Nugraha, A. D., Daryono, D., Anugrah, S. D., Fatchurochman, I., Gunawan, M. T., Sadly, M., Adi, S. P., Karnawati, D., & Arimuko, A. (2022a). The Kalaotoa Fault: A newly identified fault that generated the 7.3 Flores Sea earthquake. The Seismic Record, 2(3), 176–185. https://doi.org/10.1785/0320220015
    Supendi, P., Winder, T., Rawlinson, N., Bacon, C. A., Palgunadi, K. H., Simanjuntak, A., Kurniawan, A., Widiyantoro, S., Nugraha, A. D., Shiddiqi, H. A., Adi, S. P., Karnawati, D., Marliyani, G. I., Imran, I., & Jatnika, J. (2023b). A conjugate fault revealed by the destructive MW 5.6 (November 21, 2022) Cianjur earthquake, West Java, Indonesia. Journal of Asian Earth Sciences, 257, 105830. https://doi.org/10.1016/j.jseaes.2023.105830
    Teanby, N. A., Kendall, J.-M., & van der Baan, M. (2004). Automation of shear-wave splitting measurements using cluster analysis. Bulletin of the Seismological Society of America, 94(2), 453–463. https://doi.org/10.1785/0120030123
    Titu-Eki, A., & Hall, R. (2020). The Significance of the Banda Sea: Tectonic Deformation Review in Eastern Sulawesi. Indonesian Journal on Geoscience, 7(3), 291-303. https://doi.org/10.17014/ijog.7.3.291-303
    Toda, S., Stein, R. S., & Lin, J. (2011). Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer. Geophysical Research Letters, 38(7). https://doi.org/10.1029/2011GL047834
    Toda, S., Stein, R. S., Beroza, G. C., & Marsan, D. (2012). Aftershocks halted by static stress shadows. Nature Geoscience, 5(6), 410-413. https://doi.org/10.1038/ngeo1465
    Toda, S., Stein, R. S., Reasenberg, P. A., Dieterich, J. H., & Yoshida, A. (1998). Stress transferred by the 1995 MW = 6.9 Kobe, Japan, shock: Effect on aftershocks and future earthquake probabilities. Journal of Geophysical Research: Solid Earth, 103(B10), 24543-24565. https://doi.org/10.1029/98JB00765
    Toda, S., Stein, R. S., Richards-Dinger, K., & Bozkurt, S. B. (2005). Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. Journal of Geophysical Research: Solid Earth, 110(B5). https://doi.org/10.1029/2004JB003415
    Tsuji, T., Yamamoto, K., Matsuoka, T., et al. (2009). Earthquake fault of the 26 May 2006 Yogyakarta earthquake observed by SAR interferometry. Earth, Planets and Space, 61, e29–e32. https://doi.org/10.1186/BF03353189
    van der Elst, N. J., & Shaw, B. E. (2015). Larger aftershocks happen farther away: Nonseparability of magnitude and spatial distributions of aftershocks. Geophysical Research Letters, 42(14), 5771-5778. https://doi.org/10.1002/2015GL064734
    Vinnik, L., Farra, V., & Romanowicz, B. (1989a). Azimuthal anisotropy in the earth from observations of SKS at GEOSCOPE and NARS broadband stations. Bulletin of the Seismological Society of America, 79, 1542–1558. https://doi.org/10.1785/BSSA0790051542
    Vinnik, L., Farra, V., & Romanowicz, B. (1989b). Observational evidence for diffracted sv in the shadow of the earth’s core. Geophysical Research Letters, 16(6), 519–522. https://doi.org/10.1029/GL016i006p00519
    Waldhauser, F., & Ellsworth, W. L. (2000). A double-difference earthquake location algorithm: Method and application to the northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006
    Walker, R., Horan, M., Shearer, C., & Papike, J. (2004). Low abundances of highly siderophile elements in the lunar mantle: Evidence for prolonged late accretion. Earth and Planetary Science Letters, 224(3-4), 399-413. https://doi.org/10.1016/j.epsl.2004.05.036
    Walsh, E., Arnold, R., & Savage, M. K. (2013). Silver and Chan revisited. Journal of Geophysical Research: Solid Earth, 118(10), 5500-5515. https://doi.org/10.1002/jgrb.50386
    Wang, L., & He, X. (2020). Seismic Anisotropy in the Java-Banda and Philippine Subduction Zones and its Implications for the Mantle Flow System Beneath the Sunda Plate. Geochemistry, Geophysics, Geosystems, 21(4), e2019GC008658. https://doi.org/10.1029/2019GC008658
    Watkinson, I. M., Hall, R., & Ferdian, F. (2011). Tectonic re-interpretation of the Banggai-Sula–Molucca Sea margin, Indonesia. Geological Society, London, Special Publications, 355(1), 203–224. https://doi.org/10.1144/sp355.10
    Wibowo, B. A., Bai, L., Rohadi, S., Sahara, D. P., Chen, Z., Karyono, K., Setiawan, Y., Widyadharma, P. H., Arimuko, A., Rahayu, A. N., Adi, S. P., & Karnawati, D. (2025). Slab morphology and associated seismic and volcanic activities beneath Sulawesi Island, Indonesia. Journal of Volcanology and Geothermal Research, 465, 108352. https://doi.org/10.1016/j.jvolgeores.2025.108352
    Widijono, B. S., & Setyanta, B. (2007). Anomali gaya berat, kegempaan serta kelurusan struktur geologi daerah Jogjakarta dan sekitarnya. Jurnal Geologi dan Sumberdaya Mineral, 17, 74–90. (in Indonesia)
    Woessner, J., & Wiemer, S. (2005). Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bulletin of the Seismological Society of America, 95(2), 684–698. https://doi.org/10.1785/0120040007
    Wolf, J., Li, M., Long, M. D., & Garnero, E. (2024). Advances in Mapping Lowermost Mantle Convective Flow With Seismic Anisotropy Observations. Reviews of Geophysics, 62(2), e2023RG000833. https://doi.org/10.1029/2023RG000833
    Wu, C. F., Rau, R. J., & Chen, Y. C. (2025). Fast report: The 2025 Dapu earthquake: Simultaneous rupture of mid-crust antithetic thrust fault linkages in the fold-and-thrust belt of Southwestern Taiwan. Territory Atmosphere Ocean Science, 36, 19. https://doi.org/10.1007/s44195-025-00101-0
    Wu, J., Cai, Y., Li, W., & Feng, Q. (2017). Strong Aftershock Study Based on Coulomb Stress Triggering—A Case Study on the 2016 Ecuador MW 7.8 Earthquake. Applied Sciences, 7(1), 88. https://doi.org/10.3390/app7010088
    Wüstefeld, A., Bokelmann, G., Zaroli, C., & Barruol, G. (2008). SplitLab: A shear-wave splitting environment in Matlab. Computers & Geosciences, 34(5), 515-528. https://doi.org/10.1016/j.cageo.2007.08.002
    Wüstefeld, A., Al-Harrasi, O., Verdon, J. P., Wookey, J., & Kendall, J. M. (2010). A strategy for automated analysis of passive microseismic data to image seismic anisotropy and fracture characteristics. Geophysical Prospecting, 58(5), 755-773. https://doi.org/10.1111/j.1365-2478.2010.00891.x
    Yumul, G. P., Dimalanta, C. B., Tamayo, R. A., & Maury, R. C. (2003). Collision, subduction and accretion events in the Philippines: A synthesis. Island Arc, 12(2), 77-91. https://doi.org/10.1046/j.1440-1738.2003.00382.x
    Zhan, H. L., Bai, L., Wibowo, B. A., Liu, C. Y., Oike, K., & Ishikawa, Y. (2024). The 2023 Turkey earthquake doublet: Earthquake relocation, seismic tomography, and stress field inversion. Earth and Planetary Physics, 8(3), 535–548. https://doi.org/10.26464/epp2024022
    Zhang, F., Dai, F., Cao, L., & Li, X.-Y. (2025). Seismic amplitude inversion of SV-SV wave in VTI media. IEEE Transactions on Geoscience and Remote Sensing, 63, 1–10. https://doi.org/10.1109/TGRS.2024.3517557
    Zhang, K., Liao, J., & Gerya, T. (2024). Onset of double subduction controls plate motion reorganisation. Nature Communications, 15(1), 1-9. https://doi.org/10.1038/s41467-024-44764-8
    Zhang, M., Ellsworth, W. L., & Beroza, G. C. (2019). Rapid earthquake association and location. Seismological Research Letters, 90(6), 2276–2284. https://doi.org/10.1785/0220190052
    Zhang, Z., & Schwartz, S. Y. (1994). Seismic anisotropy in the shallow crust of the Loma Prieta segment of the San Andreas Fault System. Journal of Geophysical Research: Solid Earth, 99(B5), 9651-9661. https://doi.org/10.1029/94JB00241
    Zhu, W., & Beroza, G. C. (2018). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261-273. https://doi.org/10.1093/gji/ggy423

    QR CODE
    :::