跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳柏翰
Po-Han Chen
論文名稱: 四步移相解相位系統應用於光柵耦合表面電漿共振
Four-step Phase Shifting System Applies to Grating Coupled Surface Plasmon Resonance
指導教授: 李朱育
Ju-Yi Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 光機電工程研究所
Graduate Institute of Opto-mechatronics Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 光柵耦合表面電漿共振嚴格耦合波分析四步移相
外文關鍵詞: Grating-coupled Surface Plasmon Resonance, Rigorous-Coupled Wave Analysis, Four-step Phase Shifting
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的目的是使用四步移相解相位法解出在光柵耦合表面電漿共振發生時,因折射率變化所造成反射光的相位變化。在光學實做中,常常都會發現接收端的訊號穩定度被光源本身浮動、整個光學系統樞紐端的光學元件所產生的浮動影響,所以在這種環境干擾下選擇四步移相解相位法是個好的選擇。實驗結果證明該架構是可行的,其靈敏度為1.6*10^2 (度/RIU),系統解析度為0.048度。


    The purpose of the dissertation is to use four-step phase shifting technique to get the phase shift of reflective light caused by the change of refraction index when grating-coupled surface plasmon resonance is processing. Whenever we do an experiment, the signal stability is often interfered by the light source and the pivot optical component. Using four-step phase shifting technique to solve these problems will be a good choose. The structure has been verified workable in our experiment. The experimental results show that the sensitivity is 1.6*10^2 (degree/RIU) and the resolution is 0.048 degree.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 x 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-2-1 稜鏡耦合表面電漿發展淵源 3 1-2-2 稜鏡耦合表面電漿共振商業化廠商 4 1-2-3 光柵理論回顧 7 1-3 研究目的 10 1-4 論文架構 11 第二章 基礎理論 12 2-1表面電漿共振原理 12 2-1-1 稜鏡耦合表面電漿共振 16 2-1-2 光柵耦合表面電漿共振 20 2-2嚴格耦合波分析理論 21 2-2-1 以TE波入射之RCWA運算 21 2-2-2 以TM波入射之RCWA運算 26 2-2-3 使用多層切割的方式處理數學理論的穩定性 30 2-3 解相位架構 40 2-3-1 四步移相瓊斯矩陣計算 40 2-3-2 簡化系統的概念探討 43 2-4 小結 44 第三章 實驗架構與控制 45 3-1 感測器系統架構與設備器材介紹 45 3-2 感測器流道的製作與應用 48 3-3 程式程序 50 3-3-1 第一部分:光學校正 50 3-3-2 第二部分:強度相對於角度的共振角掃描曲線程式 53 3-3-3 第三部分:折射率變化量測實驗程式 54 3-4 小結 55 第四章 實驗與討論 56 4-1 實驗前準備 56 4-2 理論模擬:使用RCWA來模擬相位變化 58 4-3 SPR強度實驗與相位實驗 60 4-4 溶液折射率交叉變換實驗 61 4-5 誤差分析 63 4-6 小結 77 第五章 結論 78 參考文獻 79

    [1]. 吳宗正,生醫感測器,民101,取自http://140.112.94.11/~dsfon/LifeScience/生物感測/生物感測器.htm
    [2]. 張育維、黃遠東,生醫電子,科學發展期刊,451期, 2010年。
    [3]. Source: Retrieved 2012 from http://bmse.web.nthu.edu.tw/files/15-1087-13288, c2706-1.php
    [4]. J. C. M. Garnett, “Colours in metal glasses and in metallic films,” Philophical Transactions of Royal Society London, Vol. 203, pp. 385-420, (1904).
    [5]. G. Mie, “Beiträge zur optik trüber medien, speziell kolloidaler metallösungen,” Annalen der Physik, Vol. 330, pp. 377-445, (1908).
    [6]. R. H. Ritchie, “Plasma Losses by fast electrons in thin films,” Physical Review, Vol. 106, pp. 874-881, (1957).
    [7]. A. Otto, “Excitation of Nonradiative Surface Plasma Waves in Silver by Method of Frustrated Total Reflection,” Zeitschrift fur physik, Vol. 216, pp. 398-410, (1968).
    [8]. E. Kretschmann and H. Reather, “Radiative decay of nonradiative surface plasmon excited by light,” Verlag der Zeitschrift für Naturforschung, Vol. 23, pp. 2135-2136, (1968).
    [9]. J. G. Gordon and S. Ernst, “Surface plasmons as a probe of the electrochemical interface,” Surface Science, Vol. 101, pp. 499-506, (1980).
    [10]. C. Nylander, B. Liedberg and T. Lind, “Gas detection by means of surface plasmon resonance,” Sensors and Actuators, Vol. 3, pp. 79-88, (1982-1983).
    [11]. C. Nylander, B. Liedberga and T. Lind, “Gas detection by means of surface plasmon resonance,” Sensors and Actuators, Vol. 3, pp. 79-88, (1982).
    [12]. B. Liedberg, C. Nylander and I. Lundström, “Surface plasmons resonance for gas detection and biosensing,” Sensors and Actuators, Vol. 4, pp. 299-304, (1983).
    [13]. C. Nylander, B. Liedberg and T. Lind, “Gas detection by means of surface plasmons resonance,” Sensors and Actuators, Vol. 3, pp. 79-88, (1982).
    [14]. B. Liedberg, C. Nylander and I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sensors and Actuators, Vol. 4, pp. 299-304, (1983).
    [15]. B. Liedberg, C. Nylander and I. Lundstrom, “Biosensing with surface plasmon resonance—how it all started,” Biosensors and Bioelectronics, Vol. 10, pp. i-ix, (1995).
    [16]. Source: Retrieved 2012, from http://www.med.ncku.edu.tw/core/生物分子相互作用分Biacore 3000.doc
    [17]. Biacore商標與儀器Biacore3000。Retrieved 2012, from
    http://www.biacore.com/lifesciences/index.html
    http://biobest.com.au/bioweb/index.php?option=com_weblinks&view=category&ID=55&itemid=83
    [18]. Source: Retrieved 2012, from
    http://www.bio-rad.com/evportal/en/TW/LSR/Solutions/LUSM664EH/ProteOntrade_XPR36_Surface_Plasmon_Resonance_%28SPR%29_System
    [19]. Reichert商標與SR7000DC儀器。Retrieved 2012, from
    http://www.directindustry.com/prod/reichert-inc/surface-plasmon-resonance-spr-biosensors-56405-595390.html
    [20]. BI-SPR商標與儀器。Retrieved 2012, from
    http://www.biosensingusa.com/downloads/biosensing_instrument.pdf
    [21]. BIO-RAD推出的ProteOn XPR36系統、6 × 6 interaction array的設計與實驗步驟。Retrieved 2012, from
    http://www.bio-rad.com/evportal/destination/solutions?catID=lusm8zlpt
    [22]. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philosophical Magazine Series, Vol. 18, pp. 396-402, (1902).
    [23]. L. Rayleigh, “On the Dynamical Theory of Gratings,” Proceedings of the Royal Society of London, Vol. 79, pp. 399-416, (1907).
    [24]. U. Fano, “The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld's Waves),” Optical Society of America, Vol. 31, pp. 213-222, (1941).
    [25]. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions Antennas Propagation, Vol. 14, pp. 302-307, (1966).
    [26]. A. Taflove and Morris E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problems using the time-dependent Maxwell’s equations,” IEEE Transactions Microwave Theory Techniques., Vol. 23, pp. 623-430, (1975).
    [27]. A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electro-magnetic wave interactions with arbitrary structures,” Wave Motion, Vol. 10, pp. 547-582, (1988).
    [28]. G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Transactions on electromagnetic compatibility, Vol. 23, pp. 377-382, (1981).
    [29]. L. Zhen-Feng, H. Kong-Liang, Y. Bai-Po and Y. Yi-Fan, “A transmitting boundary for transient wave analyses,” Scientia Sinica A, Vol. 27, pp. 1063-1076, (1984).
    [30]. W. C. Chew: Waves and Fields in Inhomogeneous Media. New York: Van Nostrand Reinhold, pp. 251-256, (1990).
    [31]. P. Maria van den Berg, “Rigorous diffraction theory of optical reflection and transmission gratings,” Ph.D. thesis (Delft University of Technology, Delft, The etherlands), (1971).
    [32]. M. Neviere, R. Petit and M. Cadilhac, “About the theory of optical grating coupler-waveguide systems,” Optical Communication, Vol. 8, pp. 113-117, (1973).
    [33]. R. Petit and L. C. Botten: Electromagnetic Theory of Gratings. Springer-Verlag, Berlin, (1980).
    [34]. T. Tamir, H. C. Wang and A. A. Oliner, “Wave propagation in sinusoidally stratified dielectric media,” IEEE Transactions on Microwave Theory and Techniques MTT, Vol. 12, pp. 323-335, (1964).
    [35]. C. B. Burckhardt, “Diffraction of a plane wave at a sinusoidally stratified dielectric grating,” Optical Society of America 56, Vol. 56, pp. 1502-1509, (1966).
    [36]. P. Boyer, E. Popov, M. Neviere and G. Tayeb, “Diffraction theory in TM polarization: application of the fast Fourier factorization method to cylindrical devices with arbitrary cross section,” Optical Society of America A, Vol. 21, pp. 2146-2153, (2004).
    [37]. R. Magnusson and T. K. Gaylord, “Equivalence of multiwave coupled-wave theory and modal theory for periodic-media diffraction,” Optical Society of America, Vol. 68, pp. 1777-1779, (1978).
    [38]. H. Kogelnik, “Coupled Wave Theory for thick hologram Gratings,” Bell System Technical Journal, Vol. 48, pp. 2909-2947, (1969).
    [39]. D. L. Jaggard and C. Elachi, “Floquet and coupled-wave analysis of higher-order Bragg coupling in a periodic medium,” Optical Society of America, Vol. 66, pp. 674-682, (1976).
    [40]. R. Magnusson and T. K. Gaylord, “Analysis of multiwave diffraction of thick gratings,” Optical Society of America, Vol. 67, pp. 1165-1170, (1977).
    [41]. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” Optical Society of America, Vol. 71, pp. 811-818, (1981).
    [42]. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell System Technique Journal, Vol. 48, pp. 2909-2947, (1969).
    [43]. R. Magnusson and T. K. Gaylord, “Analysis of multiwave diffraction by thick gratings,” Optical Society of America, Vol. 67, pp. 1165-1170, (1977).
    [44]. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of grating diffraction E-mode polarization and losses,” Optical Society of America, Vol. 73, pp. 451-455, (1983).
    [45]. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface relief gratings,” Optical Society of America, Vol. 3, pp. 1780-1787, (1986).
    [46]. S. T. Peng, T. Tamir and H. L. Bertoni, “Theory of periodic dielectric waveguides,” IEEE Transactions on Microwave Theory and Techniques, Vol. 23, pp. 123-133, (1975).
    [47]. Lewis F. DeSandre and J. Merle Elson, “Extinction-theorem analysis of diffraction anomalies in overcoated gratings,” Optical Society of America, Vol. 8, pp. 763-777, (1991).
    [48]. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” Optical Society of America, Vol. 10, pp. 2581-2591, (1993).
    [49]. F. Montiel and M. Neviere, “Differential theory of gratings: extension to deep gratings of arbitrary profile and permittivity through the R-matrix propagation algorithm,” Optical Society of America, Vol. 11, pp. 3241-3250, (1994).
    [50]. N. P. K. Cotter, T. W. Preist and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction,” Optical Society of America, Vol. 12, pp. 1097-1103, (1995).
    [51]. M. G. Moharam, D. A. Pommet, E. B. Grann and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmission matrix approach,” Optical Society of America, Vol. 12, pp. 1077-1086, (1995).
    [52]. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” Optical Society of America, Vol. 13, pp. 1870-1876, (1996).
    [53]. R. Cush, J. M. Cronin, W. J. Stewart, C. H. Maule, J. Molloy and N. J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions part I: principle of operation and associated instrumentation,” Biosensors and Bioelectronics, Vol. 8, pp. 347-354, (1993).
    [54]. P. E. Buckle, R. J. Davies, T. Kinning, D. Yeung, P. R. Edwards and D. Pollard-Knight, “The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions part II: applications,” Biosensors and Bioelectronics, Vol. 8, pp. 355-363, (1993).
    [55]. D. Clerc and W. Lukosz, “Direct immunosensing with an integrated-optical output grating coupler,” Sensors and Actuators, Vol. 40, pp. 53-58, (1997).
    [56]. A. Brandenburg and A. Gombert, “Grating couplers as chemical sensors: a new optical configuration,” Sensors and Actuators, Vol. 17, pp. 35-40, (1993).
    [57]. W. Lukosz, D. Clerc, P. M. Nellen, C. Stamm and P. Weiss, “Output grating couplers on planar optical waveguides as direct immunosensors,” Sensors and Actuators A, Vol. 6, pp. 227-232, (1990).
    [58]. R. G. Heideman and P. V. Lambeck, “Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system,” Sensors and Actuators B, Vol. 61, pp. 100-127, (1999).
    [59]. R. G. Heideman, R. P. H. Kooyman and J. Greve, “Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor,” Sensors and Actuators B, Vol. 10, pp. 209-217, (1993).
    [60]. A. Ymeti, J. S. Kanger, J. Greve, G. A. J. Besselink, P. V. Lambeck, R. Wijn and R. G. Heideman, “Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor,” Biosensors and Bioelectronics, Vol. 20, pp. 1417-1421, (2005).
    [61]. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg and P. Meyrueis, ”Rapid protein expression analysis with an interferometric biosensor for monitoring protein production,” Biosensors and Bioelectronics, Vol. 387, pp 1921-1932, (2007).
    [62]. G. Gauglitz, A. Brecht, G. Kraus and W. Mahm, “Chemical and biochemical sensors based on interferometry at thin (multi-) layers,” Biosensors and Bioelectronics B, Vol. 11, pp. 21-27, (1993).
    [63]. H. M. Schmitt, A. Brecht, J. Piehler and G. Gauglitz, “An integrated system for optical biomolecular interaction analysis,” Biosensors and Bioelectronics, Vol. 12, pp. 809-816, (1997).
    [64]. S. J. Chen, Y. D. Su, F. M. Hsiu, C. Y. Tsou and Y. K. Chen, “Surface plasmon resonance phase-shift interferometry: Real-time DNA microarray hybridization analysis,” Biomedical Optics, Vol. 10, pp. 8-25, (2005).
    [65]. N. R. Sivakumar, W. K. Hui, K. Venkatakrishnan and B. K. A. Ngoi, “Large surface profile measurement with instantaneous phase-shifting interferometry,” Optical Engineering, Vol. 42, pp. 367-372, (2003).
    [66]. 邱國斌,蔡定平,<金屬表面電漿簡介>, 物理雙月刊,第二期, 2006年。
    [67]. 閻守勝,《固態物理概論》,五南,P23。
    [68]. Prof. Oliver Benson, “Elements of nanophotonics,”
    [69]. M. G. Moharam, E. B. Grann and D. A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” Optical Society of America, Vol. 12, pp. 1068-1076, (1995).
    [70]. M. G. Moharam, D. A. Pommet, E. B. Grann and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmission matrix approach,” Optical Society of America, Vol. 12, pp. 1077-1086, (1995).
    [71]. Pavel Kwiecien, Czech Technical University in Prage, Optical Physics Group, Czech Republic.
    [72]. EMexplorer與Gsolver模擬相同架構時的架構與曲線圖。Retrieved 2012, from www.emexplorer.net

    QR CODE
    :::