| 研究生: |
鄧國宏 Kuo-Hung Teng |
|---|---|
| 論文名稱: |
具銻砷化銦鎵基極之磷化銦異質接面雙載子電晶體製作與分析 InGaAsSb base HBT fabrication and analysis |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 銻砷化銦鎵 、異質接面雙載子電晶體 |
| 外文關鍵詞: | InGaAsSb, HBT |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在發展THz 電晶體時,藉由能帶結構設計以提高元件的電流密度及電流增益截止頻率是一個重要的方式。本實驗室在前年提出一種以銻砷化銦鎵(InGaAsSb)為基極的新型異質接面雙載子電晶體,此種電晶體不但具有超低的開啟電壓,亦有優秀的高頻特性。本論文專注於探討此種電晶體中,銻砷化銦鎵基極材料對於元件電流增益截止頻率,最大電流密度,以及載子傳輸特性的影響。
本研究成功地製作了射極面積為1×10 μm2 的小元件,其電流增益截止頻率為222 GHz,最大電流密度為576 kA/cm2,與傳統的砷化銦鎵單異質接面雙載子電晶體比較(217 GHz,372 kA/cm2),有明顯的優勢。經由小訊號參數分析,可萃取得到此電晶體基極的電子擴散係數(Dn)約為95.7cm2/s,其集極平均速度高達3.2×107 cm/s,約為傳統砷化銦鎵單異質接面雙載子電晶體的1.28 倍,證實了此電晶體之優越性。
此研究也包含了觀察不同銻含量之銻砷化銦鎵基極對元件的影響。利用順向與逆向Gummel-plot 量測可以得知,增加銻含量所造成基-集極接面能帶的改變,能夠更進一步提高元件之最大電流密度與集極平均速度,而獲得更優秀的高頻特性。
總之,此研究不但成功地完成1 μm 射極元件之製作,並且利用各種直流及交流量測技術,深入分析載子傳輸特性,為InP/InGaAsSb 異質接面雙載子電晶體之設計與應用提供了重要的指引。
Bandgap engineering is an important and effective way to increase thecurrent density and current gain cut-off frequency (fT) in the development of THz transistors. The year before last, a new heterojunction bipolar transistor
(HBT) with InGaAsSb base was proposed and demonstrated by our group. This novel transistor has not only ultra-low turn-on voltage but also excellent high-frequency performance. In this work, efforts are focused on systematicstudy on the effects of this InGaAsSb base on the current gain, cut-off frequency,maximum current density, and carrier transport of the transistor.
Devices with 1x10 μm2 emitter finger are fabricated in this work. Their fTand maximum current density is 222 GHz and 576 kA/cm2, which is superiorthan the 217 GHz and 372 kA/cm2 observed on the conventional InP/InGaAssingle HBTs. Through detailed analysis on the measured small signal parameter,the electron diffusion coefficient (Dn) is determined to be 95.7 cm2/s and the average electron velocity in collector is 3.2x107 cm/s, which is 1.28 times that of the conventional InP/InGaAs single HBTs and confirms the superiority of this novel transistor.
In this work, the effect of Sb composition in the base on the device performance is also investigated. Through forward and reverse Gummel plot measurements, it is concluded that higher Sb content leads to higher current
density and collector average velocity for the devices studied.
In conclusion, 1 μm devices have been fabricated and characterized by both dc and ac measurements, which reveal the carrier transport properties of InP/InGaAsSb HBTs. The results obtained in this work provide several critical
guidelines for the design and application of this novel transistor.
[1] M. Feng et al., “InP pseudormorphic heterojunction bipolar transistor
(PHBT) with Ft>750GHz,” in Proc. IEEE Int. Conf. Indium Phosphide
Related Mater., pp. 399-402, 2007.
[2] C. T. Kirk et al., “A theory of Transistor cutoff frequency (fτ) falloff at high
current densities,” IRE Trans. Electron Devices ED-9 (1962) 164.
[3] J. W. Lai et al., “Vertical scaling of type I InP HBT with FT>500 GHz,”
International Journal of High Speed Electronics and Systems, vol. 14, pp.
625-631, 2004.
[4] B. Mazhari et al., “Effect of collector-base valence-band discontinuity on
Kirk effect in double-heterojunction bipolar transistors,” Appl. Phys. Lett.,
vol. 59, pp. 2162-2164, 1991.
[5] C. R. Bolognesi, et al., “Low-offset NpN InP/GaAsSb/InP double
heterojunction bipolar transistors with abrupt interfaces and ballistically
launched collector electrons,” IEEE Device Research Conference, pp30-31,
1998.
[6] 謝睿杰, “高速磷化銦異質接面雙極性電晶體之製作與分析” 碩士論
文,國立中央大學,民國95年。
[7] 陳柏翰, “磷化銦/砷化銦鎵雙異質接面雙極性電晶體之製程與分析” 碩
士論文,國立中央大學,民國94年。
[8] S. Bousnina et al., “Direct parameter-extraction method for HBT small
signal model,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 529-536,
2002.
[9] I. Vurgaftman, et al., “Band parameters for III-V compound semiconductors
and their alloys”, J. Appl. Phys., Vol. 89, No. 11, June 2001.
[10] 陳馨媛, “具銻砷化銦鎵基極之異質接面雙極性電晶體特性與材料分析”
碩士論文,國立中央大學,民國97 年。
[11] W. Liu, “Handbook of III-V of Heterojunction Bipolar Transistors,” John
Wiley and sons, p90, 1998.
70
[12] N. Chand et al., “Collector-emitter offset voltage in AlGaAs/GaAs
heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 43, pp. 313-315,
1985.
[13] M. Kahn et al., “Measurement of base and collector transit times in
thin-base InGaAs/InP HBT,” IEEE Electron Dev. Lett., vol. 24, pp. 430-432,
2003.
[14] Y. Betser et al., “Measurement of the minority carrier mobility in the base of
heterojunction bipolar transistors using a magnetotransport method,” App.
Phys. Lett., vol. 67, pp. 1883-1884, 1995.
[15] H. Ito et al., “Evaluation of base transit time in ultra-thin carbon-doped base
InP/InGaAs heterojunction bipolar transistors,” Electronics Lett., vol. 32, pp.
1413-1415, 1996.
[16] K. Ouchi et al., “Low-base-resistance InP/InGaAs heterojunction bipolar
transistors with a compositionally graded-base structure,” J. Electron. Mater.
Vol. 34, pp. 1030-1034, 2005.
[17] G. Zohar et al., “Reduction of base-transit time of InP-GaInAs HBTs due to
electron injection from an energy ramp and base-composition grading,”
IEEE Trans. Electron Devices, vol. 51, pp. 658-662, 2004.
[18] Y. Oda et al., “Improvement of current gain of C-doped GaAsSb-base
heterojunction bipolar transistors by using an InAlP emitter,” App. Phys.
Lett., vol. 87, 023503, 2005.
[19] R. Driad et al., “Effect of emitter design on the dc characteristics of
InP-based double-heterojunction bipolar transistors,” Sci. Technol. vol. 16,
pp. 171-175, 2001.
[20] W. Liu et al., “Current transport mechanism in GaInP/GaAs heterojunction
bipolar transistors,” IEEE Trans. Electron Devices, vol. 40, pp. 1378-1383,
1993.
[21] M. Yee et al., “High current effects in double heterojunction bipolar
transistors,” Semicond. Sci. Technol. vol. 20, pp. 412-417, 2005.
[22] H. Fukano et al., “Effect of hot-electron injection on high-frequency
characteristics of abrupt In0.52(Ga1-xAlx)0.48As/InGaAs HBTs” IEEE Trans.
Electron Devices, vol. 39, pp. 500-506, 1992.
[23] M. Sotoodeh et al., “Empirical low-field mobility model for III-V
compounds applicable in device simulation codes,” J. Appl. Phys. Vol. 87,
pp. 2890-2900, 2000.