| 研究生: |
劉家源 Chia-Yuan Liu |
|---|---|
| 論文名稱: |
風機葉片氣動力的計算流體力學建模與模擬 |
| 指導教授: |
鍾志昂
Chih-Ang Chung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 能源工程研究所 Graduate Institute of Energy Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 風機氣動力 |
| 外文關鍵詞: | NREL Phase VI, aerodynamic |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
發展離岸風能幾乎已成為國際的趨勢,台灣優勢在於擁有許多優良離岸風場,但台灣颱風與地震頻繁的地理位置特性使得國際規範難以直接轉移。為開發離岸風能的困難與阻礙,本文建立模擬風機在均勻風條件下分析氣動力負載的方法,以商用軟體ANSYS Fluent進行模擬。主要分析的條件參考NREL Phase VI 風洞實驗,條件為0度、3度、6度三種節距角,7 m/s、10 m/s、15 m/s、20 m/s、25 m/s五種風速共十五種條件,與實驗結果比對並探討葉片的氣動力負載,分析項目包括周為流場的流線、壓力係數、正向力系數、切向力系數、升力係數、阻力係數、翼襟彎矩、葉沿彎矩、低速軸扭矩。結果顯示在低風速條件,葉片背風側尚未發生邊界層分離前,模擬足夠準確,但在風速升高使攻角上升的條件下,邊界層分離現象發生,而對於發生邊界層分離的時機以及發生邊界層分離後的行為,模擬結果顯示有誤差。
Development of offshore wind power has almost become a trend. There are many of the best offshore wind farms located in Taiwan. However, Typhoons and earthquakes happened frequently in Taiwan, which obstructs international offshore wind power technology being transferred to Taiwan directly. We used commercial software ANSYS Fluent to build a model to analyze aerodynamic load of wind turbine in uniform flow conditions. Results of the simulation were compared with NREL Phase VI wind tunnel experiments, which include 0°, 3°, 6° three different pitch angles and 7 m/s, 10 m/s, 15 m/s, 20 m/s, 25 m/s five different inlet velocities. The streamline, pressure coefficient, normal force coefficient, tangential force coefficient, lift force coefficient, drag force coefficient, flap bending moment, edge bending moment and low speed shaft torque were investigated. The simulation results are accurate enough at the low wind speed conditions. On the other hand, when the angle of attack increases as the wind speed increase, stall phenomena happen. The results show that simulation is not accurate enough to predict the timing of stall and the flow behavior after the stall occurs.
1.Betz, A. (1920). Das Maximum der theoretisch möglichen Ausnutzung des Windes durch Windmotoren. Zeitschrift fur das gesamte Turbinenwesten, 20.
2.Butterfield, C. P., Musial, W. P., & Simms, D. A. (1992). Combined experiment phase 1. Final report (No. NREL/TP-257-4655). National Renewable Energy Lab., Golden, CO (United States).
3.Fluent, A. N. S. Y. S. (2015). Theory guide. Ansys Inc.: Canonsburg, PA, USA.
4.Glauert, H. (1935). Airplane propellers. In Aerodynamic theory (pp. 169-360). Springer, Berlin, Heidelberg.
5.Hand, M. M., Simms, D. A., Fingersh, L. J., Jager, D. W., Cotrell, J. R., Schreck, S., & Larwood, S. M. (2001). Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns (No. NREL/TP-500-29955). National Renewable Energy Lab., Golden, CO.(US).
6.Jonkman, J. M. (2003). Modeling of the UAE wind turbine for refinement of FAST {_} AD (No. NREL/TP-500-34755). National Renewable Energy Lab., Golden, CO (US).
7.Joukowsky, N. E. (1920). Windmill of the NEJ type. Transactions of the Central Institute for Aero-hydrodynamics of Moscow, 1, 57.
8.La Cour, P. (1897). Forsøg med små Møllemodeller. Experiments with small wind turbine models). Ingeniøren, (10).
9.Menter, F. (1993, July). Zonal two equation kw turbulence models for aerodynamic flows. In 23rd fluid dynamics, plasmadynamics, and lasers conference (p. 2906).
10.Mo, J. O., & Lee, Y. H. (2012). CFD Investigation on the aerodynamic characteristics of a small-sized wind turbine of NREL PHASE VI operating with a stall-regulated method. Journal of mechanical science and technology, 26(1), 81-92.
11.Moshfeghi, M., Song, Y. J., & Xie, Y. H. (2012). Effects of near-wall grid spacing on SST-K-ω model using NREL Phase VI horizontal axis wind turbine. Journal of Wind Engineering and Industrial Aerodynamics, 107, 94-105.
12.J. M. Jonkman (2003). Modeling of the UAE Wind Turbine for Refinement of FAST_AD, National Renewable Energy Laboratory, NREL/TP-500-34755.
13.Schepers, J. G., Brand, A. J., Bruining, A., Graham, J. M. R., Hand, M. M., Infield, D. G., ... & Simms, D. A. (1997). Final report of IEA Annex XIV: field rotor aerodynamics. Energieonderzoek Centrum Nederland.
14.Simms, D., Schreck, S., Hand, M., & Fingersh, L. J. (2001). NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements (No. NREL/TP-500-29494). National Renewable Energy Lab., Golden, CO (US).
15.Song, Y., & Perot, J. B. (2015). Cfd simulation of the nrel phase vi rotor. Wind engineering, 39(3), 299-309.
16.Sørensen, N. N., Michelsen, J. A., & Schreck, S. (2002). Navier–Stokes predictions of the NREL phase VI rotor in the NASA Ames 80 ft× 120 ft wind tunnel. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 5(2‐3), 151-169.
17.Wilcox, D. C. (1988). Reassessment of the scale-determining equation for advanced turbulence models. AIAA journal, 26(11), 1299-1310.