跳到主要內容

簡易檢索 / 詳目顯示

研究生: 汪昱呈
Yu-Cheng Wang
論文名稱: 多功能崁入式金屬網格透明電極技術開發
Development of Fabrication Technique for Multifunctional Embedded Metal-mesh Transparent Electrodes
指導教授: 何正榮
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 101
中文關鍵詞: 網版印刷崁入式金屬網格電極有機發光二極體
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研究以網印技術印製銀導線電極圖案,結合剝離技術(Lift-off)將所印製之電極圖案崁入至聚醯亞胺(Polyimide)基板內。由於網版印刷技術擁有快速、大面積、無需真空與製程簡單等優勢,可取代現階段耗時、耗能的真空鍍膜製程 。本文第一部分針對金屬網格透明基板之基本特性作探討,包括金屬網格設計、透光度與彎曲疲勞等特性。本文的第二部分於金屬網格透明基板上塗佈導電高分子 PEDOT:PSS作為修飾平坦層,以降低電極之表面粗糙度,同時,為了進一步增進透明電極之光電特性,在製備PEDOT:PSS溶液時中添加不同比例MoOx水溶液與銀奈米粒子,這些添加對元件特性的影響,則透過電洞注入元件(Hole-only device, HOD)作測試。本文的第三部分是將所開發的金 屬網格透明電極應用於有機發光二極體 (Organic light emitting diode, OLED)元件之製程,證明其可行性 。


    This thesis aims at developing a fabricating technique for metal-mesh transparent electrodes. The approach includes the uses of the screen printing method for patterning metal mesh on a glass substrate and the lift-off method for embedding the printed mesh into a flexible polyimide substrate. As the screen printing is a fast and straightforward mass production method, it has the potential for replacing the current time and energy consuming vacuum coating process. The first part of this thesis discusses the basic characteristics of the fabricated metal mesh transparent substrate, including the metal mesh design, light transmission, bending life and other related characteristics. The second part is to coat the embedded mesh electrode with a layer of conductive polymer, PEDOT:PSS, as a modifying flat layer for reducing the surface roughness of the electrode. In order to further improve the photoelectric properties of the metal-mesh electrode, different proportions of MoOx and silver nanoparticles are blended with the PEDOT:PSS by mixing PEDOT:PSS solution with aqueous MoOx and silver nanoparticles solutions. The resulting effects are examined by characterizing a Hole-only device (HOD). By employing the developed metal mesh electrode as the anode of an organic light emitting diode (OLED), the third part of this thesis discusses its feasibility.

    摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 xi Chapter 1 緒論 1 1-1 前言 1 1-2 研究背景、目的與方法 2 Chapter 2 文獻回顧 3 2-1 金屬真空鍍膜圖案化製程 3 2-2 凸版印刷 5 2-3 凹版印刷 7 2-4 噴墨印刷 7 2-5 網版印刷 9 2-6 奈米金屬線崁入式電極 10 2-7 金屬網格崁入式電極 13 2-8 導電高分子PEDOT:PSS 19 2-9 金屬氧化物MoO3 22 2-10 金屬奈米粒子 27 2-11 傳承與創新 29 Chapter 3 實驗流程與架構 30 3-1 實驗用品 30 3-2 實驗設計與目標 33 3-3 鋼絲網版設計 34 3-4 崁入式金屬網格透明電極製作流程 36 3-5 崁入式金屬網格透明基板性質量測流程 38 3-6 電洞注入元件(Hole only device)製作流程 40 3-7 有機發光二極體(OLED)製作流程 44 Chapter 4 實驗結果與討論 46 4-1 崁入式金屬網格基板性質量測結果 46 4-1-1 光學顯微鏡檢測結果 46 4-1-2 表面輪廓量測結果 46 4-1-3 電性量測結果 52 4-1-4 透光度量測結果 54 4-1-5 彎曲量測結果 57 4-2 電洞注入元件性質量測 58 4-2-1 MoOx溶液配製 58 4-2-2 HOD元件結構 58 4-2-3 電流電壓特性曲線 59 4-2-4 UPS量測結果 60 4-2-5 Ag奈米粒子配置 61 4-2-6 Ag奈米粒子其性質檢測 61 4-2-7 HOD元件結構 64 4-2-8 電流電壓特性曲線 65 4-3 有機發光二極體元件性質量測結果 66 4-3-1 OLED電壓電流曲線 66 4-3-2 薄膜成形缺陷成因探討 68 Chapter 5 結論與未來工作 70 參考文獻 71 附錄一 彎曲測試結果整理 75 附錄二 UPS量測結果整理 78 附錄三 銀奈米粒子EDS量測 82 口試委員問題與回覆 83 口試委員針對論文之建議 85

    [1] D.S. Ghosh, T.L. Chen and V. Pruneri, "High figure-of-merit ultrathin metal transparent electrodes incorporating a conductive grid," Applied Physics Letters 96.4, 2010.
    [2] J. Zou, H.L. Yip, S.K. Hau and A.K.Y. Jen, "Metal grid/conducting polymer hybrid transparent electrode for inverted polymer solar cells," Applied Physics Letters 96.20, 2010.
    [3] Y.H. Ho, K.Y. Chen, S.W. Liu, Y.T. Chang, D.W. Huang and P.K. Wei, "Transparent and conductive metallic electrodes fabricated by using nanosphere lithography," Organic Electronics 12.6, 2011.
    [4] D. Beynon and B. Unitt, "Volume R2R Production of Conductivity Enhancing Features for Photonics Applications," Large-area Organic & Printed electronics Convention, 2012.
    [5] M.G. Kanga, H.J. Park, S.H. Ahn and L.J. Guo, "Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells," Solar Energy Materials and Solar Cells 94.6, 2010.
    [6] S. Kim and H.J. Sung, "Effect of nanostructured surfaces on conductive ink printing," Large-area Organic & Printed electronics Convention, 2012.
    [7] H.H. Lee, K.S. Chou and K.C. Huang, "Inkjet printing of nanosized silver colloids," Nanotechnology 16.10, 2005.
    [8] J.S. Kang, H.S. Kim, J. Ryu, H.T. Hahn, S. Jang and J.W. Joung, "Inkjet printed electronics using copper nanoparticle ink," Journal of Materials Science: Materials in Electronics 21.11, 2010.
    [9] A. Eshkeiti, A.S.G. Reddy, S. Emamian, B.B. Narakathu, M. Joyce, M. Joyce, P.D. Fleming, B.J. Bazuin and M.Z. Atashbar, "Screen printing of multilayered hybrid printed circuit boards on different substrates," IEEE Transactions on Components, Packaging and Manufacturing Technology 5.3, 2015.
    [10] J.Y. Lee, S.T. Connor, Y. Cui and P. Peumans, "Semitransparent organic photovoltaic cells with laminated top electrode," Nano letters 10.4, 2010.
    [11] S. Nam, M. Song, D.H. Kim, B. Cho, H.M. Lee, J.D. Kwon, S.G. Park, K.S. Nam, Y. Jeong, S.H. Kwon, Y.C. Park, S.H Jin, J.W. Kang, S. Jo and C.S. Kim, "Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode," Scientific reports 4, 2014.
    [12] K.H. Ok, J. Kim, S.R. Park, Y. Kim, C.J. Lee, S.J. Hong, M.G. Kwak, N. Kim, C.J. Han and J.W. Kim, "Ultra-thin and smooth transparent electrode for flexible and leakage -free organic light-emitting diodes," Scientific reports 5, 2015.
    [13] Y.D. Suh, S. Hong, J. Lee, H. Lee, S. Jung, J. Kwon, H. Moon, P. Won, J. Shin, J. Yeo and S.H. Ko, "Random nanocrack, assisted metal nanowire-bundled network fabrication for a highly flexible and transparent conductor," RSC Advances 6.62, 2016.
    [14] Y. Galagana, J.E.J.M. Rubingha and R. Andriessena "ITO-free flexible organic solar cells with printed current collecting grids," Solar Energy Materials and Solar Cells 95.5, 2011.
    [15] L. Zhou, H.Y. Xiang, S. Shen, Y. Q. Li, J.D. Chen, H.J. Xie, I.A. Goldthorpe, L. S. Chen, S.T. Lee and J.X. Tang, "High-Performance Flexible Organic Light-Emitting Diodes Using Embedded Silver Network Transparent Electrodes," American Chemical Society nano 8.12, 2014.
    [16] G. Kim, J.H Shin, H.J Choi and H. Lee, "Fabrication of transparent and flexible Ag three-dimensional mesh electrode by thermal roll-to-roll imprint lithography," Journal of nanoparticle research 16.9, 2014.
    [17] H.J. Choi, S. Choo, P.H. Jung, J.H. Shin, Y. Kim and H. Lee, "Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode," Nanotechnology
    26.5,2015
    [18] W. Morita, T. Hara, T. Muto and T. Kondo, "All in one PE substrate: Highly conducting plastic substrate with surface flatness and gas barrier properties," CPMT Symposium Japan, 2015.
    [19] S. Harkema, S. Mennema, M. Barink, H. Rooms, J.S. Wilson, T.V. Mol and D. Bollen, "Large area ITO-free flexible white OLEDs with Orgacon PEDOT: PSS and printed metal shunting line," Proc SPIE 7415, 2009.
    [20] S. Choi, S.J. Kim, C. Fuentes-Hernandez and B. Kippelen, "ITO-free large-area organic light-emitting diodes with an integrated metal grid," Optics express 19.104, 2011.
    [21] A. Singh, M. Katiyar and A. Garg, "Understanding the formation of PEDOT: PSS films by ink-jet printing for organic solar cell applications," RSC Advances 5.96, 2015.
    [22] F. Jiang, T. Liu, S. Zeng, Q. Zhao, X. Min, Z. Li, J. Tong, W. Meng, S. Xiong and Y. Zhou, "Metal electrode–free perovskite solar cells with transfer-laminated conducting polymer electrode," Optics express 23.3, 2015.
    [23] F. Liu, S.Shao, X. Guo, Y. Zhao and Z. Xie, "Efficient polymer photovoltaic cells using solution-processed MoO3 as anode buffer layer." Solar Energy Materials and Solar Cells 94.5, 2010.
    [24] I. Irfan, A.J. Turinske, Z. Bao and Y. Gao, "Work function recovery of air exposed molybdenum oxide thin films," Applied Physics Letters 101.9, 2012.
    [25] S. Murase and Y. Yang, "Solution processed MoO3 interfacial layer for organic photovoltaics prepared by a facile synthesis method," Advanced Materials 24.18, 2012.
    [26] F. Hou, Z. Su and F. Jin, "Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT: PSS hole transporting layer," Nanoscale 7.21, 2015.
    [27] J.H. Chang, K.M. Chiang, H.W. Kang, W.J. Chi, J.H. Chang, C.L. Wu and H.W. Lin, "A solution-processed molybdenum oxide treated silver nanowire network: a highly conductive transparent conducting electrode with superior mechanical and hole injection properties," Nanoscale 7.10, 2015.
    [28] 謝耀州,“圖案化銀透明導電膜於有機光電元件之應用”,國立中正大學,碩士論文,2013。
    [29] 田大昌,陳俊榮,謝孟婷等人,“光電子能階分析在奈米有機半導體上之應用”,工業材料雜誌,251期,99-106,2007。
    [30] H. Ishii, K. Sugiyama, E. Ito and K. Seki, "Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces," Advanced materials 11.8, 1999.
    [31] Y. Park, V. Choong, Y. Gao, B. R. Hsieh and C. W. Tang, "Work function of indium tin oxide transparent conductor measured by photoelectron spectroscopy," Applied Physics Letters 68.19, 1996.
    [32] R. Schlaf, H. Murata and Z.H. Kafafi, "Work function measurements on indium tin oxide films," Journal of Electron Spectroscopy and Related Phenomena 120.1, 2001.
    [33] 陳金鑫,黃孝文,“OLED:Materials and Devices of Dream Displays夢幻顯示器:OLED材料與元件”,初版,五南圖書,台北市,2007。
    [34] M.F. Xu, L.S. Cui and X.Z. Zhu, "Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells," Organic Electronics 14.2, 2013.
    [35] F.C. Chen, J.L. Wu, C.L. Lee, Y. Hong, C.H. Kuo and M.H. Huang, "Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles," Applied Physics Letters 95.1, 2009.
    [36] S.S. Kim, S.I. Na, J. Jo, D.Y. Kim and Y.C. Nah, "Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles," Applied Physics Letters 93.7, 2008.
    [37] 洪玉娟,“金屬奈米粒子製作緩衝層應用於有機薄膜電晶體元件特性探討”,國立中正大學,碩士論文,2012。
    [38] J. Li and N. Wu, “Biosensors Based on Nanomaterials and Nanodevices,” CRC Press, 2013.
    [39] C.H. Chuang, B.H. Chang, J.M. Chen, D.M. Lu, W. Huang, "Metal-mesh based transparent electrodes using roll-to-sheet ultraviolet soft imprinting," Micro & Nano Letters 11.10, 2016.
    [40] W. Kim, S. Kim, I. Kang, M. S. Jung, S. J. Kim, J. K. Kim, S. M. Cho, J.H. Kim, J. H. Park, "Hybrid silver mesh electrode for ITO-free flexible polymer solar cells with good mechanical stability," ChemSusChem 9.9, 2016.
    [41] Y. Liu, S. Shen, L. Chen, Y. Zhou, Y. Ye, Y. Wang, W. Qiao, W. Huang, "High performance transparent film heater with an embedded Ni metal mesh based on selected metal electrodeposition process," International Society for Optics and Photonics, 2016.
    [42] A. Khan, S. Lee, T. Jang, Z. Xiong, C. Zhang, J. Tang, L.J. Guo, W.D. Li, "High performance flexible transparent electrode with an embedded metal mesh fabricated by cost‐effective solution process," Small 12.22, 2016.
    [43] H.T. Vu, Y.K. Su, R.K. Chiang, C.Y. Huang, C.J. Chen, H.C. Yu, "Solution processable MoOx for efficient light emitting diodes based on giant quantum dots," IEEE Photonics Technology Letters 28.20, 2016.
    [44] C. Xu, P. Cai, X. Zhang, Z. Zhang, X. Xue, J. Xiong, J. Zhang, "A wide temperature tolerance, solution-processed MoO x interface layer for efficient and stable organic solar cells," Solar Energy Materials and Solar Cells 159, 2017.
    [45] J. Li, Q. Guo, H. Jin, K. Wang, D. Xu, G. Xu, X. Xu, "Low temperature solution processed MoOx as hole injection layer for efficient quantum dot light-emitting diodes," RSC Advances 7.44, 2017.

    QR CODE
    :::