跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔣志德
Chih-te Chiang
論文名稱: 鈹、鈧在鎂鋰合金強化與室溫時效軟化現象之探討
Strengthening and Room Temperature Age-Softening of Mg-Li Alloys Containing Sc and Be
指導教授: 李 雄
Shyong Lee
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 141
中文關鍵詞: 鎂鋰合金熱機處理固溶處理軋延時效軟化
外文關鍵詞: age-softening., rolling, solid-solution, Mg-Li alloys, Thermomechanical Treatments
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂鋰合金是可應用結構材料中最輕的,依據比例計算 LAZ1110 合金 (Mg-11%Li-1%Al-0.5%Zn) 擁有極輕的密度 1.64g/cm3.分別加入Sc 與 Be 兩種微量元素擠製形成 LAZ1110、LAZ1110+Sc、LAZ1110+Be 與 LAZ1110+Sc、Be 等四種新型鎂合金板材,並且從其晶粒細化,進行研究。LAZ1110 合金添加 Sc 元素有晶粒細化之效果;但添加 Be 元素會造成晶粒粗大化且可以促使 α 相以 ” 費德曼組織 ” 方式均勻的析出在 β 母相晶粒中,來達到析出強化之效果。鎂鋰合金雖然擁有極佳的室溫塑性成型性,但強度方面略顯不足,故本研究製程設計經由不同程度的熱機處理而獲得不同的顯微組織;可以更清楚瞭解熱機處理對顯微結構之影響,尤其是不同壓縮應變量及溫度對析出物析出特性、晶粒細化及再結晶的影響機制。四種合金經固溶、然後室溫壓延下,其抗拉強度都可獲得顯著的提升,顯示固溶強化加上冷加工之效果,大量 α 相固溶在 β-matrix 內,造成自我擴散 (self-diffusion) 速率降低,回復與再結晶不易產生,相對地,加工硬化效果提高;其中,以LAZ1110+Be 合金的抗拉強度由 152.3MPa 強化為 242.2MPa 獲得 59% 的提升為最高。Mg-Li 系列合金採取一般機械性質的強化機制為固溶處理、軋延 90%,發現有 θ 相 (MgLi2Al) 的產生,但 θ 相因在常溫時效過程中,非常快速的在 40 個小時左右就達到尖峰時效,抗拉強度可提升到 240MPa 左右,其原因是由於固溶強化加上冷加工硬化雙重強化效果下,使得此製程強度提升效果較單一冷加工硬化效果佳。但是放置於室溫 6 個月會產生強度時效軟化現象,強度因為 α 相析出,之後就隨時間增長而過時效,而使材料強度大幅下降,從另一角度看起來,這也提供合金室溫時效軟化特性機制的一種研究路徑。


    Mg-Li alloys are arguably among the lightest materials viable for structural application. For example, a LAZ1110 alloy (Mg-11%Li-1%Al-0.5%Zn) possesses a density of 1.64g/cm3 as calculated in accordance to the rule of mixture. Surprisingly, the actual density is even further significantly lower such as comparable with plastics. However, their elastic moduli can be at least ten times higher than those of plastics. Another merit is its ease to be cold-worked, making it desirable for sheet, plate, tube and bar structures. Conceptually, it might be a good candidate for making parts for aero vehicle such as skin of fuselage, wing and landing frame. While extremely light and highly formable Mg-Li alloys have been drawing research interest, their relatively low strength is discouraging, and thus, an issue to be addressed. In this paper, four Mg-Li alloys were processed and evaluated: the first, a basic alloy with a nominal composition of Mg-11%Li-1%Al-0.5%Zn; the second, an alloy with only Be added to the first; the third, an alloy with only Sc added to the first; and the fourth, with both Be and Sc added to the first. By processes of solid-solution treatment plus 90% heavy rolling the strengthening θ-phase did not appear immediately after quenching and required an incubation period prior to hardening. The required time for reaching the hardness maximum was about 40 h, a high strength of ~240MPa was achieved for these Mg-Li alloys. Alloy natural aging for 6 months, acicular α phase on grain boundary and inside of grain, cause of precipitation of aged at room temperature. However, subsequent natural aging process proceeded spontaneously and resulted in strength decay. On the other hand, this room temperature softening behavior is uncommon, thus offers a convenient route for studying aging characteristics of metallic alloys.

    摘 要 …………………………………………………………………………… i Abstract …………………………………………………………………………… ii 目 錄 …………………………………………………………………………… iv 表目錄 …………………………………………………………………………… ix 圖目錄 …………………………………………………………………………… xi 第一章 前言 ……………………………………………………………… 1 1.1 研究背景 …………………………………………………………… 1 1.2 研究目的 …………………………………………………………… 3 1.3 研究方法 …………………………………………………………… 4 第二章 鎂合金研究介紹 …………………………………………………… 6 2.1 鎂合金材料特性 ………………………………………………… 7 2.1.1鎂合金的命名方式 ………………………………………… 9 2.1.2 鎂合金的分類 …………………………………………… 10 2.2 合金元素添加對鎂合金性質之影響 …………………………… 12 2.2.1添加鋰(Li)元素的影響 …………………………………… 12 2.2.2添加鋁(Al)元素的影響 …………………………………… 13 2.2.3添加鋅(Zn)元素的影響 …………………………………… 13 2.2.4添加鈹(Be)元素的影響 …………………………………… 14 2.2.5添加鈧(Sc)元素的影響 …………………………………… 14 2.2.6添加其他元素的影響 …………………………………… 14 2.3 鎂合金的塑性成形 ………………………………………………… 16 2.3.1鎂合金的塑性變形理論 …………………………………… 16 2.3.2鎂合金晶粒細化理論 ……………………………………… 18 2.3.3鎂合金改良晶粒的方法 …………………………………… 20 2.4 鎂合金的熱處理 …………………………………………………… 21 2.4.1退火(annealing)處理 ……………………………………… 22 2.4.1.1回復(Recovery) ……………………………………… 23 2.4.1.2再結晶(Recrystallization) …………………………… 24 2.4.1.3動態再結晶(dynamic recrystallization) …………… 25 2.4.2顆粒散布強化理論 ………………………………………… 28 2.4.2.1固溶處理(solid solution ) …………………………… 28 2.4.2.2時效處理(aging treatment) …………………………… 29 2.4.2.3析出硬化(precipitation hardening) ………………… 30 2.4.2.3.1析出硬化原理 …………………………………… 30 2.4.3鎂合金析出行為 ………………………………………… 31 2.5 鎂鋰合金現況發展 ……………………………………………… 32 第三章 實驗方法及其步驟 ……………………………………………… 48 3.1 實驗前準備 ………………………………………………………… 48 3.2 實驗步驟 ………………………………………………………… 49 3.2.1擠製、壓延製程 …………………………………………… 49 3.2.2擠製、固溶再壓延製程 …………………………………… 49 3.2.3金相觀察(OM)及晶粒大小量測 ………………………… 50 3.2.4掃描式電子顯微鏡(SEM)拉伸破斷面觀察 …………… 51 3.2.5結構分析 …………………………………………………… 51 3.2.6機械性質測試 ……………………………………………… 51 3.2.6.1常溫拉伸試驗 ………………………………………… 52 3.2.6.2硬度試驗 ……………………………………………… 52 第四章 研究結果與討論 ………………………………………………… 62 4.1 擠製原材後軋延 ………………………………………………… 62 4.1.1顯微組織觀察 ……………………………………………… 63 4.1.1.1 LAZ1110顯微組織觀察 …………………………… 63 4.1.1.2 LAZ1110+Sc顯微組織觀察 ………………………… 63 4.1.1.3 LAZ1110+Be顯微組織觀察 ……………………… 64 4.1.1.4 LAZ1110+Sc & Be顯微組織觀察 ………………… 64 4.1.2擠製及軋延之機械性質 ………………………………… 65 4.1.2.1 LAZ1110之機械性質 ………………………………… 65 4.1.2.2 LAZ1110+Sc機械性質 ……………………………… 65 4.1.2.3 LAZ1110+Be機械性質 ……………………………… 65 4.1.2.4 LAZ1110+Sc & Be機械性質 ……………………… 66 4.1.2.5常溫機械性質比較 …………………………………… 66 4.1.3結構分析 …………………………………………………… 66 4.1.4 LAZ1110室溫時效 ………………………………………… 67 4.1.4.1 LAZ1110擠製原材之室溫時效 …………………… 67 4.1.4.2 LAZ1110擠製、軋延室溫時效 …………………… 68 4.2 擠製原材後、固溶(350℃,1hr)、軋延 ……………………… 70 4.2.1擠製、固溶(350℃,1hr)、軋延之顯微組織觀察 …… 70 4.2.2擠製、固溶(350℃,1hr)、軋延之機械性質 ………… 71 4.2.3擠製、固溶(350℃,1hr)、軋延之室溫時效 ………… 72 4.2.4擠製、固溶(350℃,1hr)、軋延之拉伸破斷面觀察 … 75 4.3 擠製、固溶(350℃,1hr)、軋延、退火處理 …………………… 75 4.3.1金相顯微組織 …………………………………………… 75 4.3.2擠製、固溶(350℃,1hr)、軋延、退火處理 之機械性質…………………………………………………………… 77 4.3.2.1固溶處理硬度 ………………………………………… 77 4.3.2.2退火處理硬度 ………………………………………… 78 4.3.3擠製、固溶(350℃,1hr)、軋延、退火處理 之抗拉強度…………………………………………………… 78 4.4 軋延與ECAE兩者製程間顯微組織與機械性質的差異 … 79 4.4.1經固溶、然後壓延與ECAE顯微組織觀察 ……… 79 4.4.1.1 LAZ1110顯微組織觀察 …………………………… 79 4.1.1.2 LAZ1110+Sc顯微組織觀察 ……………………… 80 4.1.1.3 LAZ1110+Be顯微組織觀察 ……………………… 81 4.1.1.4 LAZ1110+ Sc &Be顯微組織觀察 ………………… 81 4.4.2經固溶、然後壓延與ECAE機械性質比較 ………… 82 4.4.2.1 LAZ1110機械性質比較 …………………………… 82 4.4.2.2 LAZ1110+Sc機械性質比較 ……………………… 83 4.4.2.3 LAZ1110+Be機械性質比較 ……………………… 83 4.4.2.4 LAZ1110+ Sc &Be機械性質比較 ………………… 84 4.4.3經固溶、然後壓延與ECAE比較 …………………… 84 第五章 結 論 …………………………………………………………… 132 參考文獻 …………………………………………………………… 135

    1. S. Kamado and Y. Kojima: Metall. Sci. Tech. 16 (1998) 45-54.
    2. Y. W. Kim, D. H. Kim, H. I. Lee and C. P. Hong, Scripta Mater. 38 (1998) 923-928.
    3. G. S. Song and M. V. Kral: Mater. Charact. 54 (2005) 279-286.
    4. J. Lee, J. Y. Wang, C. S. Lee and S. Lee: Materials Science Forum, Vols. (2007) 546-549.
    5. B. Smola, I. Stulikova, V. Ocenasek, J. Pelcova and V. Neubert: Materials Science and Engineering A, 462 (2007) 370-374.
    6. M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon,“ Microhardness Measurement and the Hall-Petch Relationship in an Al-Mg Alloy with Submicrometer Grain Size ”, Acta Mater., 44, 1996, pp.4619-4629.
    7. T. Mukai, K. Ishikawa and K. Higashi, “ Influence of Strain Rate on the Mechanical Properties in Fine –Grained Aluminum Alloys ”, Mater. Sci. Eng. A204, 1995, pp.12-18.
    8. T. G. Langdon, “ Superplastic in Ultrafine-Grained Materials ”, Key Eng. Mater. , 97-98, 1994, pp.109-124.
    9. ASM Speciality Handbook, “ Magnesium and Magnesium Alloys ”, ASM International, (1999).
    10 Norsk Hydro Databank, Norsk Hydro Research Center Porsgrunn, 1996.
    11 M. C. Flemings,“ Solidification processing “, Metallurgical and Materials Transactions B, 2007, p.p.2121-2134.
    12. F. Jona, P. M. Marcus,“ Magnesium under Pressure, Structure and Phase Transition ” . Journal of Physics: Condensed Matter , 2003, 15, 7727.
    13. R. W. Cahn, P. Haasen and E. J. Kramer, “ Structure and Properties of Nonferrous Alloys ”, Materials Science and Technology, 8 (1996) pp.131-212.
    14. Shigeharu Kamado,日本鎂合金工業現況及研究趨勢,台灣鎂合金協會,2001,pp.60。
    15. Tien-Chan Chang, Jian-Yih Wang , Chun-Len Chu and Shyong Lee, “ Mechanical properties and microstructures of various Mg–Li alloys ”, Materials Letters 60 (2006) 3272–3276.
    16. 王建義,“ 鎂合金板材之壓型加工技術 ”,工業材料雜誌 170期,pp.132~136,2001。
    17. 楊智超,“ 鎂合金材料特性及新製程發展 ”,工業材料雜誌152期,pp.72~80,1999。
    18. 黃繼遠,莫文偉,鄭銘章,“ 電磁波VS 電磁波遮蔽材 ”,科學發展362 期,pp.18~21,2003。
    19. 楊榮川,“ 鎂及其合金 ”,機械工程手冊3-金屬材料篇,2002年,第6-33~42頁。
    20. D. S. Tawil,” Corrosion and Surface Protection Developments ”, in the Proceedings of the Conference of Magnesium Technology, 1986, pp.66.
    21. 戴光勇,鎂合金表面處理技術,材料與社會,Vol.24, 1998, pp.57.
    22. J. A. Jensen and L. S. Chumbley, “ Processing and mechanical properties of magnesium-lithium composites containing steel fibers ”, Metallurgical and Transactions A Vol. 29A (1998), pp.863~873.
    23. B. L. Mordike and T. Ebert,“ Magnesium: Properties-applications -potential ”, Materials Science and Engineering A,Vol. 302, Issue 1, 2001, p.p. 37-45.
    24. 蔡幸甫,“ 鎂合金產業技術及市場發展趨勢專題調查 ”,工研院產業經濟與資訊服務中心科技專案成果,2001年。
    25. C. Shaw and H. Jones,“ The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys ”, Materials Science and Engineering A226-228 (1997), pp. 856~860.
    26. ASM, “ Magnesium Alloys ”, Metals Handbook 8th Edition, Vol. 8, 1976, pp.314-319.
    27. 魏汝超,“ 鎂合金之熱機處理與退火處理的顯微組織研究 ”,台灣大學材料科學與工程學研究所,碩士論文,2003年。
    28. ASM, “ Magnesium alloys ”, Metals Handbook 9th Edition, Vol. 6, 1985, pp. 425-429.
    29. ASM “ Metallography, Structure and Phase Diagram ”, Metals Handbook 8th Edition, Vol. 8, p.326.
    30. C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, “ Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy ”, Materials Science and Engineering A325(2002), pp.344-355.
    31. C. Shaw, Y. Li and H. Jones, “ Effect of load and lubrication on low load hardness solidified light alloy ”, Materials Letters 28 (1996) 33-36.
    32. ASM, “ Magnesium Alloys ”, Metals Handbook 9th Edition, Vol. 6,
    1985, pp.431-434.
    33. Kainer KU, Bach F Von. The Current State of Technology and
    Potential for Further Development of Magnesium Applications. In Kainer KU(ed).Kaiser F(trans). Magnesium Alloys and Technoloty, Weinheim: WILEY-VCH Verlag GmbH, 2003.
    34. 張永耀,“ 金屬熔銲學 ”,徐氏基金會,台北,1976,第134-170頁。
    35. 魏振仁,“ 鎂合金時效行為之研究 ”,義守大學材料所碩士論文,2001。
    36. B. Smola, I. Stulikova, V. Ocenasek, J. Pelcova and V. Neubert: “ Annealing effects in Al–Sc alloys ” Materials Science and Engineering A(2006).
    37. Michael M Avedesian, Hugh Baker. ASM Speciality Handbook – Magnesium and Magnesium Alloys. Ohio, ASM International,1999.
    38. A. Saccone, D. Maccio, J.A.J. Robinson, F.H. Hayes and R. Ferro. “ Smith thermal analysis of selected Pr–Mg alloys “, Journal of Alloys and Compounds 317–318 (2001), pp.497–502
    39. A. K. Dahle, T.C. Lee, M. D. Nave, P.L. Schaffer, D. H. StJohn,
    “ Development of the as-cast microstructure in magnesium aluminum alloys ”, Journal of Light Metals, pp.61~72, 2001.
    40. A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan and M. Kupiec, “Grain refinement of AZ31 and ZK60 Mg alloy-towards superplasticity studies”, Materials Science and Engineering A 302A(2001), pp.56~62.
    41. N. Zheng , H. Y. Wang, and Z. H. Gu,“ Development of an effective modifier for hypereutectic Mg-Si alloys “, Journal of Alloys and Compounds, 2008 ,Vol.463 (1/2) (L)1-4
    42. Kubota K, Mabuchi M, Higashi K. Review Processing and Mechanical Properties of Fine-grained Magnesium Alloys, Journal of Materials Science, Vol.34, 1999, pp.2255-2262.
    43. Baker C, Lorimor G W, Unswroth W. Magnesium Technology. Proc. 49th Conf., International Magnesium Association, 1992.
    44. G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology Vol. 8 VCH (1996), pp.113.
    45. 陳勇宏,“ AZ31及AZ61鎂合金之晶粒細化與鈑片成形研究 ”,中央大學機械工程研究所,博士論文,2004年。
    46. J. A. Chapman and D. V. Wilson, J. Inst. Metals 91 (1962-63), pp.35.
    47. W.A. Anderson and R.F. Mehl. Trans Met. Soc. AIMW, Vol.161, 1945, pp.140.
    48. Metals Handbook 9th, Vol.4, Heat Treating, pp.744-753.
    49. J. F. Humphreys,“ Recrystallization and Recovery ”, in Materials Science and Technology, ed. By R. W. Cahn, P.Haasen and E. J. Kramer, Vo1.15, 1991, pp.371, VCH.
    50. D. Hull and D. J. Bacon,“ Introduction to dislocations “, 3rd edition, Pergamon Press, 1984, pp.208.
    51. S. P. Gupta,“ Kinetics of discontinuous coarsening of cellular precipitate in a Ni-8.5 at.%Sn alloy “, Acta Metal1., Vo1.35, N0.3, 1987, pp.747-757.
    52. T. Mohri, T. Nishiwaki, T. Kinoshita, H. Iwasaki , M. Mabuchi, M. Nakamura, T. Ashina, T. Aizawa and K. Higashi,“ Microstructure and Tensile Properties of Rolled Mg-5.5mass%-0.6mass%Zr Alloy “, Mater.Trans., JIM, Vo1.41 (9), 2000, pp.1154-1156.
    53. H. Takuda, S. Kikuchi and N.Hatta,” Possibility of Grain Refinement for Superplasticity of Mg-Al-Zn Alloy by Pre-deformation ”,J. Mater. Sci., Vol.27, 1992, pp.937-940.
    54. C. J. Peel, B. Evans, C. A. Baker, D. A. Bennett and P. J. Gregson, “ The development and application of improved aluminum-lithium alloys ”, Proceeding of the second international Aluminum-Lithium Conference, The Metallurgy Society of AIME, California USA, Apri1, 1983, pp.363-392.
    55. J. W. Martin, “ Precipitation Hardening ”, Pergamon press, New York, 1968.
    56. I. J. Polmear, “ Magnesium alloys and applications ”, Material Science and technology, vol. 10, Jan. 1994, pp.1-16.
    57. W.J.Kim and S.W.Chung, “ Superplasticity in fine-grained AZ61 magnesium alloy “, Metals and Materials International, Vol. 6, No.3, pp. 255-259.
    58. T. C. Chang, J. Y. Wang, C. M. O and Shyong Lee, “ Grain Refining of Magnesium Alloy AZ 31 by Rolling ”, Materials Processing Technology, 140 (2003), pp. 588-591.
    59. 王長寧,“ 冷軋對於LAZ1110 合金機械性質影響之研究 ”,國立東華大學材料科學與工程學系,碩士論文,2008年。
    60. A. Alamo and A. D. Banchik, “ Precipitation Phenomean in the Mg-31%Li-1% Al Alloy ”, Journal of Materials Science 15 (1980) 222-229.
    61. Thomas H. Courtney, “ Mechanical Behavior of Materials ” Vol. 2 pp.340-345.
    62. 陳羿帆,“ 添加鈹、鈧之LAZ1110超輕鎂合金顯微組織與機械性質研究 ”,中央大學,碩士論文, 2009年。
    63. Y. W. Kim and D. H. Kim,” Widmanstatten type solidification in squeeze casting of Mg-Li-Al alloys “, Scripta Mater. 38 (1998) 923-929.
    64. P. Crawford, R. Barrosa, J. Mendez, J. Foyos and O. S. Es-Said, Journal of Materials Processing Technology, Volume 56, Issues 1-4, January 1996, pp.108-118.
    65. 陳學翰,“ Be、Sc微量元塑添加對LAZ1110合金機械性質之研究 ”,東華大學,碩士論文,2008年。
    66. Guang Sheng Song, “ Some new characteristics of the strengthening phase in β-phase magnesium-lithium alloys containing and beryllium ”, Materials Science and Engineering A 371 (2004) 371–376.
    67. Chang-Chan Hsu, Jian-Yih Wang and Shyong Lee,“ Room Temperature Aging Characteristic of MgLiAlZn Alloy ”, Materials Transactions , 2008, 49 (11), 2728-2731.
    68. 劉國政,“ 添加鈹、鈧之LAZ1110鎂鋰合金經等通道彎角擠製後之微結構及機械性質研究 ”,中央大學,碩士論文, 2008年。

    QR CODE
    :::