跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戴士凱
Shih-Kai Tai
論文名稱: 擴增實境科學實驗環境對學生合作科學探究成效之影響
The Impact of Augmented Reality of Science Laboratory Environment on Students’ Collaborative Science Inquiry Effectiveness
指導教授: 劉晨鐘
Chen-Chung Liu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 126
中文關鍵詞: 擴增實境合作科學探究認知負荷內在動機自我效能
外文關鍵詞: augmented reality, collaborative science inquiry, cognitive load, intrinsic motivation, self-efficacy
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著擴增實境技術的進步,其在科學教育中的應用越來越廣泛,特別是對於抽象的科學概念的學習成效較佳,如電學、光學和電磁學。過去的研究顯示,擴增實境學習環境可以提升學生的學習成效、內在動機和自我效能,並降低外在認知負荷。本研究旨在探討高沉浸式擴增實境頭戴式顯示器(HoloLens 2)與實體光學儀器結合的學習環境,對學生在「光的折射—凸透鏡的成像」科學主題上的學習效果。研究對象為58名國中一年級學生,分為擴增實境實驗組(26人)和實體光學儀器控制組(32人),進行兩人一組的實驗。本研究收集了學生的光學概念學習單、光學概念測驗前後測、認知負荷問卷以及學習動機問卷前後測,並分析擴增實境環境對學習成效、內在認知負荷、外在認知負荷、增生認知負荷和學習動機中內在動機、自我效能的影響。同時,透過錄影和錄音分析學生在擴增實境環境下合作科學探究的過程。結果顯示,實驗組在學習成效上整體顯著優於控制組,特別是在遷移學習方面;在認知負荷和學習動機方面,內在認知負荷顯著低於控制組;內在動機和自我效能則是兩組皆無顯著差異。此外,影片分析發現擴增實境環境能幫助學生建構科學概念並促進合作學習,但討論程度因人而異,且存在資訊不同步的限制。最後,本研究提供未來系統功能優化及實驗活動設計的建議。總體而言,本研究建置了一個輔助中學生學習抽象科學概念的擴增實境科學實驗環境雛形,幫助學生在觀察與合作中建構科學概念,培養科學探究的能力。


    With the advancement of augmented reality (AR) technology, its application in science education has become increasingly widespread, particularly in enhancing the understanding of abstract scientific concepts such as electricity, optics, and electromagnetism. Previous research has shown that AR learning environments can improve students' learning outcomes, intrinsic motivation, and self-efficacy while reducing extraneous cognitive load. This study aims to explore the effectiveness of a learning environment combining a highly immersive AR headset (HoloLens 2) with physical optical instruments on students' understanding of the scientific topic "Refraction of Light—Imaging with Convex Lenses." The participants were 58 first-year middle school students divided into an AR experimental group (26 students) and a physical optical instrument control group (32 students), working in pairs. The study collected data through optical concept worksheets, pre-and post-tests on optical concepts, cognitive load questionnaires, and pre-and post-tests on learning motivation. It analyzed the effects of the AR environment on learning outcomes, intrinsic cognitive load, extraneous cognitive load, germane cognitive load, and components of learning motivation, including intrinsic motivation and self-efficacy. Additionally, the study involved video and audio analyses of students' collaborative scientific inquiry processes in the AR environment. The results showed that the experimental group significantly outperformed the control group in overall learning outcomes, especially in transfer learning. The intrinsic cognitive load was significantly lower in the experimental group compared to the control group. At the same time, there were no significant differences in intrinsic motivation and self-efficacy between the two groups. Furthermore, video analysis revealed that the AR environment facilitated the construction of scientific concepts and promoted collaborative learning, though the level of discussion varied among individuals, and there were limitations due to information asynchrony. Finally, the study provides suggestions for future system functionality improvements and experimental activity design. Overall, this study establishes a prototype of an AR science experiment environment that supports middle school students in learning abstract scientific concepts, helping them construct scientific understanding through observation, collaboration, and fostering their scientific inquiry skills.

    摘要..........I Abstract..........II 致謝..........IV 目錄..........VI 圖目錄..........IX 表目錄..........X 第一章 緒論..........1 1.1 研究背景與動機..........1 1.2 研究目的與問題..........3 1.3 名詞解釋..........3 1.3.1 擴增實境(Augmented Reality, AR)..........3 1.3.2 合作科學探究(Collaborative Science Inquiry)..........4 1.3.3 認知負荷(Cognitive Load)..........4 1.3.4 內在動機(Intrinsic Motivation)..........4 1.3.5 自我效能(Self-Efficacy)..........4 1.4 論文架構..........5 第二章 文獻探討..........6 2.1 擴增實境在科學探究上的應用..........6 2.2 擴增實境學習環境對學習成效的影響..........9 2.3 擴增實境學習環境下的認知負荷..........10 2.4 擴增實境學習環境對學習動機的影響..........11 第三章 系統設計..........13 3.1 系統特色..........13 3.2 系統介紹..........14 3.2.1 實體光學儀器..........15 3.2.2 HoloLens 2..........16 3.2.3 物理模擬輔助學習應用程式..........17 3.2.2.1 基本功能 (光路開關、輔助資訊)..........20 3.2.2.2 提示..........22 3.2.2.3 小測驗 (小評量)..........24 3.3 系統架構..........27 第四章 研究方法..........29 4.1 研究流程..........29 4.2 研究對象..........31 4.3 實驗設計..........32 4.4 研究工具..........34 4.4.1 光學概念學習單..........34 4.4.2 光學概念測驗..........35 4.4.3 認知負荷問卷..........36 4.4.4 學習動機問卷前、後測..........36 4.5 資料蒐集與分析..........37 4.5.1 學習成效..........37 4.5.2 認知負荷..........41 4.5.3 學習動機..........41 4.5.4 擴增實境環境下之科學探究互動分析..........42 第五章 結果與討論..........43 5.1 光學概念學習成效..........44 5.1.1 光學概念學習單..........44 5.1.2 光學概念測驗..........48 5.1.2.1 光學概念測驗各小題..........50 5.1.2.2 光學概念測驗概念選擇題..........52 5.1.2.3 光學概念測驗畫圖題..........53 5.2 認知負荷問卷分析..........55 5.2.1 內在認知負荷..........55 5.2.2 外在認知負荷..........57 5.2.3 增生認知負荷..........58 5.3 學習動機問卷分析..........59 5.3.1 內在動機..........59 5.3.2 自我效能..........63 5.4 擴增實境環境下之科學探究互動分析..........67 5.4.1 案例一..........67 5.4.2 案例二..........75 第六章 結論與建議..........92 6.1 結論..........92 6.1.1 擴增實境環境下學生之光學概念學習成效表現?..........92 6.1.2 擴增實境環境是否影響學生對科學探究之認知負荷?..........93 6.1.3 擴增實境環境是否影響學生對科學探究之學習動機?..........93 6.1.4 學生如何在擴增實境環境下進行科學探究?..........94 6.2 未來建議..........95 參考文獻..........97 附錄A 光學概念學習單(實驗組)..........102 附錄B 光學概念學習單(控制組)..........104 附錄C 光學概念測驗..........106 附錄D 認知負荷問卷..........109 附錄E 學習動機問卷(前測)..........110 附錄F 學習動機問卷(後測)..........112

    Abdinejad, M., Talaie, B., Qorbani, H. S., & Dalili, S. (2021). Student perceptions using augmented reality and 3d visualization technologies in chemistry education. Journal of Science Education and Technology, 30, 87-96.

    Anuar, S., Nizar, N., & Ismail, M. A. (2021). The impact of using augmented reality as teaching material on students' motivation. Asian Journal of Vocational Education And Humanities, 2(1), 1-8.

    Arslan, R., Kofoğlu, M., & Dargut, C. (2020). Development of augmented reality application for biology education. Journal of Turkish Science Education, 17(1), 62-72.

    Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., & MacIntyre, B. (2001). Recent advances in augmented reality. IEEE computer graphics and applications, 21(6), 34-47.

    Buchner, J., Buntins, K., & Kerres, M. (2022). The impact of augmented reality on cognitive load and performance: A systematic review. Journal of Computer Assisted Learning, 38(1), 285-303.

    Cai, S., Chiang, F. K., & Wang, X. (2013). Using the augmented reality 3D technique for a convex imaging experiment in a physics course. International Journal of Engineering Education, 29(4), 856-865.

    Cipresso, P., Giglioli, I. A. C., Raya, M. A., & Riva, G. (2018). The past, present, and future of virtual and augmented reality research: a network and cluster analysis of the literature. Frontiers in psychology, 9, 309500.

    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd Edition ed.). Lawrence Erlbaum Associates. https://doi.org/10.4324/9780203771587

    Di Serio, Á., Ibáñez, M. B., & Kloos, C. D. (2013). Impact of an augmented reality system on students' motivation for a visual art course. Computers & education, 68, 586-596.

    Duncan, T., Pintrich, P., Smith, D., & Mckeachie, W. (2015). Motivated strategies for learning questionnaire (MSLQ) manual. University of Michigan, National Center for Research to Improve Postsecondary Teaching and Learning. https://doi. org/10.13140/RG. 2.1.2547.6968.

    Gösling, H., Dreesbach, T., Vogel, J., & Kochon, E. (2021, June). Linking Augmented Reality with Peer Tutoring in Vocational Learning Environments: A Multi-Agent-Based Approach. In European Conference on Information Systems (ECIS), Marrakech, Morocco.

    Gsaxner, C., Li, J., Pepe, A., Jin, Y., Kleesiek, J., Schmalstieg, D., & Egger, J. (2023). The HoloLens in medicine: A systematic review and taxonomy. Medical Image Analysis, 85, 102757.

    Hammady, R., Ma, M., Strathern, C., & Mohamad, M. (2020). Design and development of a spatial mixed reality touring guide to the Egyptian museum. Multimedia Tools and Applications, 79(5), 3465-3494.

    Hensen B., Koren I., Klamma R. (2019). Gamification support for learning in spatial computing environments. Journal of Universal Computer Science, 25(12), 1644–1665.

    Huang, Y., Amini, F., Jiang, C., & Yin, J. (2023). The effectiveness of an augmented reality app in online civil engineering learning. Innovations in Education and Teaching International, 60(3), 335-345.

    Ibáñez, M. B., Di Serio, Á., Villarán, D., & Kloos, C. D. (2014). Experimenting with electromagnetism using augmented reality: Impact on flow student experience and educational effectiveness. Computers & education, 71, 1-13.

    Kapp, S., Lauer, F., Beil, F., Rheinländer, C. C., Wehn, N., & Kuhn, J. (2021). Smart sensors for augmented electrical experiments. Sensors, 22(1), 256.

    Kencana, H. P., Iswanto, B. H., & Wibowo, F. C. (2021, October). Augmented reality geometrical optics (AR-GiOs) for physics learning in high schools. In Journal of Physics: Conference Series, 2019(1), 012004. IOP Publishing.

    Khan, T., Johnston, K., & Ophoff, J. (2019). The impact of an augmented reality application on learning motivation of students. Advances in Human‐Computer Interaction, 2019(1), 7208494.

    Kim, J. H., & Choi, I. (2021). Choosing the level of significance: A decision‐theoretic approach. Abacus, 57(1), 27-71.

    Kline, R. B. (2010). Principles and Practice of Structural Equation Modeling (3th ed.). New York, NY: The Guilford Press.

    Lakens, D. (2022). Sample size justification. Collabra: psychology, 8(1), 33267.

    Leonard S. N., & Fitzgerald R. N. (2018). Holographic learning: A mixed reality trial of Microsoft HoloLens in an Australian secondary school. Research in Learning Technology, 26. https://doi.org/10.25304/rlt.v26.2160

    Leppink, J., & van den Heuvel, A. (2015). The evolution of cognitive load theory and its application to medical education. Perspectives on medical education, 4, 119-127.

    Maier, M., & Lakens, D. (2022). Justify your alpha: A primer on two practical approaches. Advances in Methods and Practices in Psychological Science, 5(2), 25152459221080396.

    Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and instruction, 60, 225-236.

    Müller, C., Krone, M., Huber, M., Biener, V., Herr, D., Koch, S., ... & Ertl, T. (2018). Interactive molecular graphics for augmented reality using HoloLens. Journal of integrative bioinformatics, 15(2), 20180005.

    National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.

    Park, S., Bokijonov, S., & Choi, Y. (2021). Review of microsoft hololens applications over the past five years. Applied sciences, 11(16), 7259.

    Peterson, C. N., Tavana, S. Z., Akinleye, O. P., Johnson, W. H., & Berkmen, M. B. (2020). An idea to explore: Use of augmented reality for teaching three‐dimensional biomolecular structures. Biochemistry and Molecular Biology Education, 48(3), 276-282.

    Radu, I., & Schneider, B. (2019, May 4-9). What can we learn from augmented reality (AR)? Benefits and drawbacks of AR for inquiry-based learning of physics. In Proceedings of the 2019 CHI conference on human factors in computing systems, Glasgow Scotland, UK.

    Radu, I., & Schneider, B. (2023). How augmented reality (ar) can help and hinder collaborative learning: a study of AR in electromagnetism education. IEEE transactions on visualization and computer graphics, 29(9), 3734-3745.

    Saadon, N. F. S. M., Ahmad, I., Pee, A. N. C., & Hanapi, C. (2020, May). The implementation of augmented reality in increasing student motivation: systematic literature review. In IOP Conference Series: Materials Science and Engineering, 854(1), 012043. IOP Publishing.

    Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10, 251-296.

    Tan, Y., Xu, W., Chen, K., Deng, C. & Wang, P. (2024). An interactive and collaborative augmented reality environment for civil engineering education: steel reinforcement bars teaching as an example. Engineering, Construction and Architectural Management, 31(3), 1100-1122. https://doi.org/10.1108/ECAM-06-2022-0557

    Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International journal of medical education, 2, 53.

    Thees, M., Kapp, S., Strzys, M. P., Beil, F., Lukowicz, P., & Kuhn, J. (2020). Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Computers in Human Behavior, 108, 106316.

    Wang, H. Y., Duh, H. B. L., Li, N., Lin, T. J., & Tsai, C. C. (2014). An investigation of university students’ collaborative inquiry learning behaviors in an augmented reality simulation and a traditional simulation. Journal of Science Education and Technology, 23, 682-691.

    Winer, B. J. (1962). Statistical principles in experimental design. McGraw-Hill. https://doi.org/10.1037/11774-000

    Xia, Z., Feng, Z., Yang, X., Kong, D., & Cui, H. (2023). MFIRA: Multimodal Fusion Intent Recognition Algorithm for AR Chemistry Experiments. Applied Sciences, 13(14), 8200.

    QR CODE
    :::