跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃浚達
Chun-Ta Huang
論文名稱: 多孔矽之孔隙率與其光學性質之探討
A Study of Porosity and Optical Property of Porous Silicon
指導教授: 鄭劭家
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 80
中文關鍵詞: 多孔矽孔隙率PL光譜
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 透過氫氟酸在適當的偏壓下對矽晶做陽極處理後,其表面會形成
    多孔結構。此過程中不僅使矽晶轉變成多孔矽,同時也會產生奈米等
    級的矽晶粒。當材料尺寸縮小至奈米尺度時,會出現量子侷限效應,
    使得原本不具發光性的矽晶,轉變為具發光特性的多孔矽。而多孔矽
    發光特性與孔洞大小相關,孔洞大小的量化可以使用孔隙率表示。
    本論文利用影像處理的方法量化孔隙率,接著,針對不同孔隙率
    的樣品,分析反射比例、光致發光光譜(PL)與拉曼光譜,探討其光
    學性質的變化。最後,將PL光譜的峰值位置代入有效質量近似(EMA)
    模型,藉此推估晶粒尺寸。

    此外,本論文量測在蝕刻方向上的光學性質變化,藉由PL與拉曼
    光譜量測,分析在不同孔隙率下,其光學性質隨深度的變化。
    透過上述量測,結果說明當孔隙率逐漸上升時,PL峰值能量逐漸
    藍移,對應晶粒尺寸亦隨之減小,同時拉曼峰值會呈現紅移。


    When silicon crystals are anodized in hydrofluoric acid under appropriate bias, a porous structure forms on the surface. This process not only transforms crystalline silicon into porous silicon (PS), but also generates silicon nanocrystals. As the material size is reduced to the nanoscale, quantum confinement effects emerge, enabling silicon,which is normally non-luminescent, to exhibit photoluminescent properties. The photoluminescence of porous silicon is closely related to pore size, which can be quantitatively represented by porosity.

    In this study, porosity was quantified using image processing techniques. Subsequently, the optical properties—including reflection ratio, photoluminescence (PL), and Raman spectra—were analyzed for samples with different porosities. The peak positions of the PL spectra were used in the effective mass approximation (EMA) model to estimate the nanocrystal sizes.

    Additionally, this study investigates the variation of optical properties along the etching depth direction. By measuring PL and Raman spectra at different depths, the relationship between optical characteristics and porosity variation with depth is analyzed.

    The results show that as porosity increases, the PL peak exhibits a blue shift, indicating a reduction in nanocrystal size. Simultaneously, the Raman peak shows a red shift.

    目錄 摘要.............................i Abstract.........................ii 致謝.............................iii 目錄..............................v 圖目錄...........................viii 第一章 簡介 1 第二章 基本原理 5 2-1 多孔矽的形成 4 2-2-1 量子侷限效應理論 5 2-2-2 應用在多孔矽上的量子侷限效應模型 8 2-3-1 光致發光 9 2-3-2 多孔矽的光致發光 10 2-4-1 聲子色散關係 13 2-4-2 矽的晶格特性以及聲子震動模態 15 第三章 實驗樣品、架設與實驗方法 19 3-1 實驗樣品介紹 19 3-2 光激螢光光譜、拉曼光譜實驗架設 23 3-3 實驗方法 25 3-3-1 孔隙率的測定 25 3-3-2 樣品正面的光學性質 26 3-3-3 樣品邊緣側面的光學性質 28 第四章 實驗結果與討論 29 4-1 孔隙率的測定 30 4-2 多孔矽樣品正面的光學性質 34 4-2-1 多孔矽樣品正面的雷射反射比例 34 4-2-2 多孔矽樣品正面的光致發光光譜 36 4-2-3 多孔矽樣品正面的拉曼光譜 39 4-2-4 多孔矽樣品正面的光學性質統整 42 4-3 多孔矽樣品邊緣以及側面的光學性質 45 4-3-1 多孔矽樣品邊緣以及側面的拉曼光譜 45 4-3-2 多孔矽樣品邊緣以及側面的光致發光光譜 51 4-3-3 光致發光光譜以及拉曼光譜的對照 56 第五章 結論 61 參考文獻 63

    [1] Uhlir, "Electrolytic shaping of germanium and silicon," Bell Syst. Tech. J., 35, 333 (1956).
    [2] M. J. Beale, D. J. Robbins, P. J. Pearson, and R. Greef, "Optical Studies of the Structure of Porous Silicon Films Formed in p-type Degenerate and non-Degenerate Silicon," J. Phys. C: Solid State Phys., 17, 6535–6552 (1984).
    [3] K. Molnar; T. Mohacsy; M. Adam; I. Barsony, "Porous silicon light-emitting diodes–mechanisms in the operation. " Optical Materials. ,17,111-116(2001)
    [4] L.T. Canham, " Handbook of Porous Silicon", Springer International Publishing, Switzerland (2014).
    [5] A. G. Cullis and L. T. Canham, Nature, " Visible light emission due to quantum size effects in highly porous crystalline silicon", 353, 335 (1991).
    [6] H.D. Fuchs, M. Stutzmann, M.S. Brandt, M. Rosenbauer, J. Weber et al., " Porous silicon and siloxene: vibrational and structural properties. " Phys. Rev. B Condens. Matter 48, 8172–8189 (1993).
    [7] D. Dimova-Malinovska, C. Janvier, M. Sendova Vassileva, M. Kamenova, Ts. Marinova, V. Krastev, " Correlation between the photoluminescence and chemical bonding in porous silicon", Solid State Commun., 99, 641-644 (1996).
    [8] L. T. Canham, " Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Appl. Phys. Lett., 37, 1046 (1990).
    [9] Paz Elia, Einat Nativ-Roth, Yehuda Zeiri, Ze'ev Porat, "Determination of the average pore-size and total porosity in porous silicon layers by image processing of SEM micrographs", Microporous and Mesoporous Materials, 225, 465-471(2016)
    [10] D. Brumhead, L.T. Canham, D.M. Seekings, P.J. Turnon, "Gravimetric analysis of pore nucleation and propagation in anodised silicon", Electrochim. Acta, 38,191-197(1993)
    [11] Takashi Unagami, "Formation Mechanism of Porous Silicon Layer by Anodization in HF Solution",ft. Journal of the Electrochemical Society, 127, 476–483(1980)
    [12] Ilya Sychugov, "Synthesis and properties of single luminescent silicon quantum dots", KTH Royal Institute of Technology(2006)
    [13] A. Mortezaali, S. Ramezani Sani, F. Jovani Jooni, "Correlation between porosity of porous silicon and optoelectronic properties", Journal of Optoelectronics and Advanced Materials,11, 1647-1650(2009)
    [14] Jordan Peckham , G. Todd Andrews, "Simple optical method to determine the porosity of porous silicon films", Thin Solid Films, 520, 2526-2531(2012)
    [15] Magdaléna Kadlečíková, Juraj Breza, Ľubomír Vančo, Miroslav Mikolášek, Michal Hubeňák, Juraj Racko, Ján Greguš, "Raman spectroscopy of porous silicon substrates ", Optik, 147, 347-535
    [16] Ashish Kumar Singh, Jahnvi Tiwari, Ashish Yadav, and Rakesh Kumar Jha, "MATLAB user interface for simulation of silicon germanium solar cell", Journal of Materials, 2015, 1–6(2015)
    [17] L. Canham, "Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures," Faraday Discussions, 222, 10 (2020).
    [18] Y. Yu, "Size-dependent photoluminescence efficiency of silicon nanocrystal quantum dots," J. Phys. Chem. C, 121, 23240 (2017).
    [19] R. Tsu, H. Shen, and M. Dutta, "Correlation of Raman and photoluminescence spectra of porous silicon," Appl. Phys. Lett., 60, 112 (1992).
    [20] M. V. Wolkin, "Electronic states and luminescence in porous silicon quantum dots: the role of oxygen," Phys. Rev. Lett., 82, 197 (1999).
    [21] F. A. Rustamov, N. H. Darvishov, V. E. Bagiev, M. Z. Mamedov, E. Y. Bobrova, and H. O. Qafarova, "Determination of size and bandgap distributions of Si nanoparticles from photoluminescence excitation and emission spectra in n-type stain etched porous silicon," J. Lumin. 154, 224 (2014).
    [22] A. G. Cullis, L. T. Canham, and W. J. Calcott, "The structural and luminescence properties of porous silicon," J. Appl. Phys., 82, 2852 (1997).
    [23] S. Manotas, F. Agullo-Rueda, J. D. Moreno, R. J. Martin-Palmar, Guerrero-Lemus, and J. M. Martinez-Duart, "Depth-Resolved Microspectroscopy of Porous Silicon Multilayers," Mat. Res. Soc. Symp. Proc., 588, 231 (2000).
    [24] Ger de Graaf and Reinoud F. Wolffenbuttel, "Illumination Source Identification Using a CMOS Optical Microsystem" IEEE Trans. Instrum. Meas. 53, 478–484 (2004).

    QR CODE
    :::