| 研究生: |
鄭博元 Po-yuan Cheng |
|---|---|
| 論文名稱: |
高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究 High reflectance and low resistance AgLa alloy ohmic contacts on p-GaN |
| 指導教授: |
陳一塵
I-chen Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學與工程研究所 Graduate Institute of Materials Science & Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 發光二極體 、氮化鎵 、歐姆接觸 |
| 外文關鍵詞: | GaN, ohmic contact, light emitting diode |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於發光二極體LED(Light Emitting Diode)的蓬勃發展,因此具有高亮度的 GaN based 發光二極體受到各界重視。目前覆晶式(flip -chip)和垂直式(thin-GaN)兩種LED結構被提出來製作超高亮度LED。一個具有高反射性與低接觸電阻之P型GaN金屬接觸層是重要的關鍵。銀在可見光範圍中有最高的反射性以及經由退火後可以與p型氮化鎵形成良好的歐姆接觸,然而在熱退火處理過程中,銀薄膜會發生聚集的現象,而使得接觸電阻增加和反射性降低。
在本研究中,我們利用 AgLa 合金材料製作電極,此種接觸結構在300 ℃快速熱退火後,會具有比銀接觸結構具有更低的特徵接觸電阻以及更高的反射率,分別為5.874×10-5 Ω cm2和93%。它能具備如此優良的表現是因為鑭在銀裡之溶解度非常低,且在空氣氣氛下退火時,在晶界上可能有析出物產生,而析出物的出現減緩了銀的聚集以及遷移現象。此外為了解其在高功率發光二極體元件晶圓鍵合時之穩定度,藉由長時間熱處理來測定銀鑭合金結構之熱穩定性,實驗結果顯示此結構在長時間熱處理後,仍然具有良好的電性質,因此銀鑭合金結構對於當作p型氮化鎵的反射性歐姆接觸是非常合適的選擇。
Due to Light-emitting diode has great progress in recent years, high power GaN-based Light-emitting diode has been emphasized. But conventional LED could not satisfy this demand, two types of LED device structure, which are vertical structure LED and flip-chip structure LED, have been proposed to fabricate high power LED. Because p-type GaN has high resistivity, it is critical to search for a metal which has high reflectance and good ohmic contact to reduce its contact resistivity. silver has the highest reflectivity in visible spectrum and forms a good contact to p-GaN by annealing. But Ag film would agglomerate rapidly when it was rapid-thermal-annealed for obtaining low contact resistance or bonded with another substrate. The phenomena described above resulted in the increase of low contact resistance and the decrease of light reflectance. Therefore, it is important to avoid the agglomeration of silver thin film.
In this study, we fabricate a alloy structure p-GaN / AgLa . After rapid-thermal-annealing at 300 ℃, this structure exhibited the lower specific contact resistivity of 5.874×10-5 Ω cm2 and higher reflectivity of 93% than single Ag contact. The reason why it has better performance is that solubility of lanthanum in silver is considerablely low and may form precipitate in grain boundary. The presence of precipitate in grain boundary suppress Ag film from the phenomenon of agglomeration and migration when it was annealed in air ambience. Besides, we tested the thermal stability of AgLa alloy structure for investigating the stability of this structure during the wafer bonding process of two LEDs. Experimental results showed that it still had the good property after long-time heat treatment. Therefore, AgLa (180 nm) alloy structure is a excellent candidate for the reflective ohmic contact of p-GaN.
參考文獻
[1] W. C. Johnson, J. B. Parsons, and M. C. Crew, J. Phys. Chem. 36, 2651(1932).
[2] J. I. Pankove, E. A. Miller, D. Richman, and J. E. Berkeyheiser, , RCA Review 32, 383(1971)
[3]S. Yoshida, S. Mwasawa and S. Gonda, Appl. Phys. Lett. 42, 427 (1983)
[4] I. Askai, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, J. Cryst. Growth, 98, 209(1989)
[5] S Nakamura, Japanese Journal of Applied Physics Part 2-Letters, 30, L1705(1991)
[6] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, “High-power InGaN single-quantum-well-structure blue and violet light-emitting-diodes,” Appl. Phys. Lett. 67, 1868 (1995)
[7] M. Asif Khan, A. Bhattarai, J. N. Kuznia, D. T. Olson, Appl. Phys. Lett, 63, 1214(1993)
[8] Binari SC, Doverspike K, Kelner G, Dietrich HB, Wickenden AE. “GaN FETs for microwave and hightemperature applications,” Solid-State Electron, 41, 177(1997)
[9] Shuji Nakamura, Masayuki Senoh, Takashi Mukai, 62, 2390(1993)
[10] Shuji Nakamura, Masayuki Senoh, Shin-ichi Nagahama, Naruhito Iwasa, Takao Yamada, Toshio Matsushita, Hiroyuki Kiyoku, Yasunobu Sugimoto, Appl. Phys. Lett, 68, 3269 (1996)
[11] X. Zhang, P. Kung, D. Walker, J. Piotrowski, A.Rogalski, A. Saxler, M. Razeghi, Appl. Phys. Lett, 67, 2028(1995)
[12] Schubert, Light-emitting diode, Cambridge University Press (2003)
[13]E. H. Rhodetick and R.H.Willian, Metal-Semiconductor Contact, 2nded. Oxford Science Publiscations, 12(1988)
[14] Ben G. Streetman, Sanjay Kumar Banerjee, Solid state electronic devices 6th edtion, Pearson education
[15] J. Bardeen, Phys. Rev, 71, 717(1947)
[16]周佳賢, 高度熱穩定的鎳/銀鋁合金薄膜應用在p型氮化鎵之歐姆接觸, 國立中央大學化學工程與材料工程研究所, 碩士論文(2006)
[17] F. A. Padovani, R. Stratton, Solid-state Electron, 9, 695(1966)
[18] Dieter K. Schroder, Semiconductor material and device characterization, IEEE Press John wiley & sons (2006)
[19] H.H. Berger, Solid-State Electron, 15, 145(1972)
[20] W. Shockley, R. M. Scarlett, Rep. No. AFAL-TDR-64-207, Air Force Avionics Lab (1964)
[21] J. H. Klootwijk, C. E. Timmering, Proc. IEEE 2004 Int. Conference on Microelectronic Test Structure, 17, 247 (2004)
[22] Shuji Nakamura, Naruhito Ieasa, Masayuki Senoh and Takashi Mukai, Jpn. J. Appl. Phys, 31, 1258(1992)
[23] Shuji Nakamura, Takashi Mukai, Masayuki Senoh, Naruhito Iwasa, Jpn. J. Appl. Phys, 31, 139(1992).
[24] Yow-Jon Lin, Appl. Phys. Lett, 84, 2760(2004)
[25] Hiroshi Amano, Masahiro Kito, Kazumasa Hiramatsu, Isamu Akasaki, Jpn. J. Appl. Phys, 28, L2112(1989)
[26]J.L.Lee, J.K.Kim, J.W.Lee, Y.J.Park, and T.I.Kim, Solid-State Electron. 43, 435 (1999)
[27] Jong Kyu Kim, Jong Lam Lee, Jae Won Lee, Hyun Eoi Shin, Yong Jo Park, Taeil Kim, Appl. Phys. Lett, 73, 2953(1998)
[28] Yow Jon Lin, Chang Da Tsai, Yen Tang Lyu, Ching Ting Lee, Appl. Phys. Lett, 77, 687(2000)
[29] Jin Kuo Ho, Charng Shyang Jong, Chien C. Chiu, Chao Nien Huang, Chin Yuen Chen, Kwang Kuo Shih, Appl. Phys. Lett, 74, 1275(1999)
[30] Li Chien Chen, Fu Rong Chen, Ji Jung Kai, Li Chang, J. Appl. Phys, 86, 3826(1999)
[31]L.C. Chen, J.K. Ho, C.S. Jong, C.C. Chiu, K.K. Shih, F.R. Chen, J.J. Kai, and L. Chang,Appl. Phys. Lett. 76, 3703(2000)
[32] X. Guo ,E. F. Schubert J. Appl. Phys, 90, 4191(2001)
[33]W. S. Wong, T. Sands, N. W. Cheung, Appl. Phys. Lett, 72, 599(1998)
[34] Chen-Fu Chu, Chang-Chin Yu, Hao-Chun Cheng, Chia-Feng Lin and Shing-Chung Wang, Jpn. J. Appl. Phys, 42, L147(2003)
[35] S.L. Chen, S.J. Wang, K.M. Uang, T.M. Chen, W.C. Lee, and B.W. Liou, IEEE PHOTONICS TECHNOLOGY LETTERS, 19, 351( 2007)
[36] S.J. Chang, C.S. Chang, Y.K. Su, C.T. Lee, W.S. Chen, C.F. Shen, et al.,IEEE Transactions on Advanced Packaging, 28, 273(2005)
[37] June-O Song, Joon Seop Kwak, Yongjo Park, Tae-Yeon Seong, Appl. Phys. Lett, 86, 062104(2005)
[38] D. L. Hibbard, S. P. Jung, C Wang, D. Ullery, Y. S. Zhao, H. P. Lee, W. So, H Liu, Appl. Phys. Lett, 83, 311(2003)
[39]Ja-Yeon Kim, Seok-In Na, Ga-Young Ha, Min-Ki Kwon, ll-Kyu Park, Jae-Hong Lim, Seong-Ju Park, Min-Ho Kim, Dongyoul Choi, Kyeongik Min, Appl. Phys. Lett, 88, 043507(2006)
[40]Jun Ho Son, Gwan Ho Jung, Jong-Lam Lee, Appl. Phys. Lett, 93 , 012102(2008)
[41]Jun Ho Son, Yang Hee Song, Hak Ki Yu, Jong-Lam Lee, Appl. Phys. Lett, 95, 062108(2009)
[42] S. K. Sharma, J. Spitz, Thin solid films, 65, 339(1980)
[43] W. Gluchowski , Z.M. Rdzawski, Journal of Achievements in Materials and Manufacturing Engineering, 28, 143(2008)