跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蔡惠心
Hui-Hsin Tsai
論文名稱: PEARL立方衛星姿態辨識與控制次系統之設計與模擬
Design and Simulation of Attitude Determination and Control Subsystem for PEARL CubeSat
指導教授: 趙吉光
Chi-Kuang Chao
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學與工程學系
Department of Space Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 117
中文關鍵詞: 立方衛星姿態辨識與控制
外文關鍵詞: Attitude Determination and Control
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文在於設計及模擬PEARL立方衛星的姿態辨識與控制次系統(ADCS),PEARL立方衛星是一枚通訊衛星,任務目的為驗證衛星與地面站能以Ka-band通訊,以及科學酬載小型電離層探測儀(CIP)量測影響通訊的電漿密度不規則體,在衛星不同模式中ADCS要能作姿態控制達到指向需求以達成任務。根據衛星需求設計次系統、控制模式與控制流程。使用MATLAB/Simulink以Software in the loop的方式模擬ADCS,建立真實太空中的環境、擾動、軌道、衛星運動學模型用來進行不同運作模式中的控制演算法與模擬。如Detumbling控制、Sun-Pointing控制、LVLH控制、Target-Pointing控制,模擬結果成功達到指向需求穩定衛星。


    This thesis is mainly about the design and simulation of Attitude Determination and Control Subsystem (ADCS) for Propagation Experiment using kurz-Above-band Radio in Low earth orbit (PEARL) CubeSat. PEARL CubeSat is a communication satellite with the objective of verifying the communication of the ground station and the CubeSat using Ka-band transceiver, measuring the plasma irregularities of the Earth’s ionosphere that affects the communication systems. ADCS shall be able to control the attitude of PEARL in different operational mode in order to reach the pointing requirements and accomplishing the mission. Designs of the control mode and control process are in terms of the requirements. The ADCS is modeled as a software in the loop with MATLAB/Simulink. A scenario of the real space with environments, disturbances, spacecraft dynamics, sensors, actuators models are created to design the control algorithms and simulations of different control mode. Such as Detumbling control, Sun-Pointing control, LVLH control, Target-Pointing control. The simulation results reach the pointing requirements and stabilize the CubeSat successfully.

    摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vii 表目錄 xii 一、 緒論 1 1.1 PEARL立方衛星 1 1.2 PEARL任務目的 2 1.3 PEARL立方衛星次系統 4 1.4 研究方法 8 1.5 論文架構 8 二、 PEARL-2立方衛星姿態辨識與控制次系統 9 2.1 ADCS需求(Mission Requirements) 9 2.2 運作模式 10 2.2.1 鳳凰模式(Phoenix Mode) 11 2.2.2 安全模式(Safe Mode) 11 2.2.3 充電模式(Charge Mode) 12 2.2.4 科學模式(Science Mode) 12 2.2.5 通訊模式(Telemetry, Tracking & Control) 13 2.3 硬體元件 13 2.3.1 感測器(Sensors) 14 2.3.1.1 磁力計(Magnetometer) 14 2.3.1.2 陀螺儀(Gyroscope) 14 2.3.1.3 太陽感測器(Sun Sensor) 14 2.3.1.4 星象儀(Star Tracker) 15 2.3.1.5 GNSS接收機 15 2.3.2 致動器(Actuators) 16 2.3.2.1 磁力棒(Magnetorquer) 16 2.3.2.2 反應輪(Reaction Wheel) 17 2.3.3 ADCS硬體元件使用數量 19 三、 座標、軌道與運動模型 20 3.1 參考座標系 20 3.1.1 ECI座標 20 3.1.2 ECEF座標 21 3.1.3 LVLH座標 21 3.1.4 衛星體座標 22 3.1.5 目標參考座標 23 3.2 姿態表示 24 3.2.1 尤拉角(Euler Angles) 24 3.2.2 四元數(Quaternions) 24 3.2.3 姿態表示轉換 25 3.3 軌道 26 3.3.1 克卜勒軌道元素(Kepler Elements) 26 3.3.2 太陽同步軌道 27 3.4 衛星運動模型 28 3.4.1 衛星動力學(Dynamics) 29 3.4.2 衛星運動學(Kinematics) 30 四、 環境模型 32 4.1 軌道推算器 32 4.2 兩行軌道要素形式TLEs 32 4.3 地球磁場模型 34 4.4 日側/夜側模型 37 4.5 環境擾動模型 39 4.5.1 重力梯度力矩(Gravity-Gradient Torque) 40 4.5.2 太陽輻射壓力矩(Solar Radiation Pressure Torque) 40 4.5.3 大氣擾動力矩(Aerodynamic drag Toque) 43 4.5.4 殘磁擾動力矩(Magnetic Residual Torque) 45 4.5.5 環境擾動力矩總和 47 4.6 PEARL-2轉動慣量 49 五、 Simulink模擬與結果 50 5.1 ADCS模擬流程 50 5.2 衛星無控制運動情形 52 5.2.1 衛星無控制無擾動 52 5.2.2 衛星無控制有擾動 57 5.3 Detumbling Control 59 5.4 LVLH Pointing Control 72 5.5 Sun-Pointing Control 80 5.6 Target-Pointing Control 86 六、 總結與未來展望 94 參考文獻 95 附錄A. IGRF13係數 98 附錄B. CubeWheel結構圖 100

    [1] Valdemir Carrara and Hélio Koiti Kuga, “Estimating friction parameters in reaction wheels for attitude control.”, Sao Jose dos Campos, SP, Brazil, 2013.

    [2] CubeADCS Interface Control Document V3.18, South Africa, 2020.

    [3] Mogens, Blanke, Martin Birkelund Larsen, Satellite Dynamics and Control in a Quaternion Formulation, Technical University of Denmark, 2010.

    [4] Alicia Johnstone, “CubeSat Design Specification (1U – 12U) REV 14”, San Luis Obispo, CA, 2020.

    [5] James R. Wertz, Wiley J. Larson, Space Mission Analysis and Design Third Edition, Douglas Kirkpatrick, United States Air Force Academy Donna Klungle, Microcosm, Inc., 1999.

    [6] James R. Wertz, Fundamentals of Spacecraft Attitude Determination and Control, Springer New York Heidelberg Dordrecht London, 2014.

    • [7] MARCEL J. SIDI, Spacecraft Dynamics and Control, Cambridge University Press, 1997.

    [8] NovAtel OEM719 Product Sheet REV 6

    [9] Paweł Zagórski, “Modeling disturbances influencing an Earth-orbiting satellite.”, AGH University of Science and Technology, 2012.

    [10] Jeremy Davis, “Mathematical Modeling of Earth's Magnetic Field.”, Virginia Tech, Blacksburg, 2004.

    [11] IAGA V-MOD Geomagnetic Field Modeling
    http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html

    [12] Kasper Fuglsang Jensen, Kasper Vinther, “Attitude Determination and Control System for AAUSAT3.”, Aalborg University, 2010.

    [13] Staff of Princeton Satellite Systems, Inc, ATTITUDE AND ORBIT CONTROL USING THE SPACECRAFT CONTROL TOOLBOX V4.6, 2000.

    [16] Steven R. Hirshorn , NASA Systems Engineering Handbook, Washington, DC, 2007.

    [17] National oceanic and atmospheric administration, National aeronautics and space administration, United states air force, 1976 U.S. Standard Atmosphere, Washington, DC, 1976.

    [18] Howard D. Curtis Embry-Riddle, Orbital Mechanics for Engineering Students, Aeronautical University Daytona Beach, Florida, 2015.

    [19] International Geomagnetic Reference Field (IGRF-13)
    http://wdc.kugi.kyoto-u.ac.jp/igrf/index.html

    [20] Magnetic Field of the Earth
    http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/MagEarth.html

    [21] IDEASSAT-Orbit
    https://www.heavens-above.com/orbit.aspx?satid=47458&lat=0&lng=0&loc=Unspecified&alt=0&tz=UCT&cul=zh-CHT

    [21] Brian Gasberg, Thomsen Jens Nielsen, “CubeSat Sliding Mode Attitude Control - Developing Testbed for Verification of Attitude Control Algorithms.”, Aalborg University, 2016.

    [22] Barry B. Goeree, Brian Shucker,“Geocentric Attitude Control of a Small Satellite for Ground Tracking Maneuvers.”, University of Arizona, 1999.

    [23] Dániel Bolgár, Nikolaos Biniakos, Alexandru-Cosmin Nicolae, “Fault Tolerant Attitude Control of a Pico-Satellite Equipped with Reaction Wheels and Magnetorquers.”, Aalborg University, 2018.

    [24] Alexandre Cortiella et al., “3 CAT-2: Attitude Determination and Control System for a GNSS-R Earth Observation 6U CubeSat Mission.”, Universitat Politècnica de Catalunya, 2017.

    [25] Dragonfly Aerospace Chameleon Imager brochure

    QR CODE
    :::