| 研究生: |
陳致宇 Chih-Yu Chen |
|---|---|
| 論文名稱: |
以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究 The study on simulated cutting performance of surgical skin-grafting blades made by Febased bulk metallic glass composites or coated with Fe-based metallic glass thin film |
| 指導教授: |
鄭憲清
Shian-Ching Jang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 鐵基非晶質複合材料 、破裂韌性 、手術用取皮刀 |
| 外文關鍵詞: | Bulk amorphous steel composites (BASCs), Fracture toughness, Skin grafting blade |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵基非晶質合金又稱於非晶質鋼材(Bulk Amorphous Steel, BAS),具有
優良玻璃形成能力、高強度、高硬度、耐磨耗以及良好耐腐蝕特性,相較於
其他金屬玻璃,如鋯基、鈦基等,鐵基非晶質合金擁有更高機械強度且低製
備成本,但由於其韌性較低,在應用上仍有限制。
本研究以Fe-Cr-Mo-C-B-Y-Co 為主要成分,根據金屬玻璃形成之三大
準則及微量添加法,選擇添加不同原子百分比延性金屬:鉭(Ta)配製出系列
合金,並以真空吸鑄法製做出直徑2~4 mm 的非晶質複合棒材,在冷卻時碳
化鉭析出成為非晶質合金內的第二相,使得鐵基非晶質合金之整體韌性獲
得改善,其破裂韌性數值有效提升至10.2 ± 0.9 MPa∙m^1⁄2,相較於未添加延性顆粒之基材有顯著提升(5.13 ± 0.9 MPa∙m1⁄2),並以此複材製作取皮刀刀片進行刀具銳利度分析。
同時,本研究也以直流磁控濺鍍法鍍覆鐵基金屬玻璃薄膜在取皮刀刀
片上,透過取皮模擬測試以及BSI測試刀片切削性能。經過15 cm取皮測試
後,鐵基金屬玻璃複材取皮刀、鐵基非晶質鍍膜300 nm、400 nm膜厚取皮
刀、商用取皮刀的刀具銳利指標(BSI)數值分別提高至0.35、0.49、0.49、0.53,
由此驗證出鐵基金屬玻璃複材取皮刀耐磨耗能力佳,經取皮測試後仍保有
優良的切割能力。
Fe-based amorphous alloys, also known as, bulk amorphous steel (BAS), exhibit not only impressive mechanical properties such as high hardness and compressive strengths but also good anti-corrosion and wear resistance. In this
study, several BASs are made of cast iron which reduced the manufacture cost.However, all these BAS materials are extremely brittle and strongly restrict their applications as engineering or structure materials.
The purpose of this study is to enhance the fracture toughness by dispersion strengthening method.. A series of Fe-Cr-Mo-C-B-Co-Y-Ta bulk amorphous steel
composites (BASCs) were successfully fabricated by suction casting.X-ray diffraction(XRD) and differential scanning calorimetry(DSC) are conducted to examine the amorphous structure of these BASCs. Indentation testing and
ultrasonic echography were applied to characterize the mechanical properties of these BASCs. The results show that all Fe-based BASCs present much higher fracture toughness (10.2±0.9 MPa∙m1/2) than the based one (5.13±0.9 MPa∙m^1/2).
The Fe-based BASC further processed into a surgical skin-grafting blade as well as the sputter target to deposit thin film amorphous steel (TFAS) for the investigation of initial grafting ability and durability performance of 15 cmgrafting
path in comparison with commercial one.
Both Fe-based BASC and Fe-based TFAS blades exhibited much lower cutting energy than the commercial one. After 15cm skin-grafting test, the BSI value of BASC and TFAS skin-grafting blade still remain under blunt level
(BSI<0.5), where the commercial one is increased from 0.35 to 0.53, which is considered as a blunt blade.
[1] A. C. Lund, "Topological and chemical arrangement of binary alloys during severe deformation," Journal of Applied Physics, Vol. 95, p. 4815, 2004.
[2] 吳學陞, 工業材料 Vol. 149, 1999.
[3] A. Inoue, B. L. Shen, H. Koshiba, H. Kato, A. R. Yavari” Ultra-high strength above 5000 MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys ”, Acta Materialia , Vol. 52 , pp. 1631-1637, 2004.
[4] A. Inoue, H. Koshiba, T. Zhang, and A. Makino, "Wide supercooled liquid region and soft magnetic properties of Fe56Co7Ni7Zr0-10Nb (or Ta)0-10B20 amorphous alloys," Journal of Applied Physics, Vol. 83, p. 1967, 1998.
[5] A. Inoue and K. Hashimoto, Amorphous and Nanocrystalline materials, 2001.
[6] P. H. Tsai , A. C. Xiao , J. B. Li , J. S. C. Jang , J. P. Chu , J. C. Huang, ”Prominent Fe-based bulk amorphous steel alloy with large supercooled liquid region and superior corrosion resistance ”, Journal of alloys and compounds, Vol 586, pp. 94-98, 2014
[7] M. Ylönen, T. Vähä-Heikkilä, H. Kattelus, “Amorphous Metal Alloy Based MEMS for RF Application”, Sensors and Actuators A: Physical, Vol. 132, pp. 283-288, 2006.
[8] V. Keryvin , V. H. Houng , J. Shen , “Hardness, toughness, brittleness and cracking systems in an iron-based bulk metallic glass by indentation” , Intermetallics, Vol 17, pp. 211-217 , 2009.
[9] A. Inoue, “Stabilization of Metallic Supercooled Liquid and Bulk
Amorphous Alloys”, Acta Materialia, Vol. 48, pp. 279-306, 2000.
[10] W. H. Zachariasen, "The atomic arrangement in glass," Journal of
the American Chemical Society, Vol. 54, pp. 3841-3851, 1932.
[11] R. Babilas , R. Nowosielski, “Iron-based bulk amorphous alloys”, Archives of Materials Science and Engineering, Vol. 44, Issue 1, pp. 5-27, 2010.
[12] J. Kramer, "Produced the first amorphous metals through vapor deposition," Annals of Physics, Vol. 19, p. 37, 1934.
[13] A. Brenner, D. E. Couch, and E. K. Williams, "Electrodeposition of Alloys of Phosphorus with Nickel or Cobalt," Journal of Research of the National Bureau of Standards, Vol. 44, pp. 109- 122, 1950.
[14] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline Structure in solidified Gold-Silicon alloys," Nature, Vol. 187, pp. 869-870, 1960.
[15] H. S. Chen, "Glassy metals," Rep. Prog. Phys, Vol. 43, p. 364, 1980.
[16] C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough, "Preparation of amorphous Ni60Nb40 by mechanical alloying," Applied Physics Letters, Vol. 43, pp. 1017-1019, 1983.
[17] A. Inoue, "High strength bulk amorphous alloys with low critical cooling rates," Materials Transactions, JIM, Vol. 36, pp. 866-875, 1995.
[18] A. Inoue, T. Zhang, and T. Masumoto, "Production of Amorphous Cylinder and Sheet of La55Al25Ni20 Alloy by a Mettallic Mold Casting Method," Material Transactions JIM, Vol. 31, pp. 425-428, 1990.
[19] A. Inoue, A. Kato, T. Zhang, and S. G. Kim, "Mg-Cu-Y Amorphous Alloys With High Mechanical Strengths Produced by a Metallic Mold Casting Method," Materials Transactions, JIM, Vol. 32, pp. 609-616, 1991.
[20] A. Inoue, T. Nakamurat, N. Nishiyamatt, and T. Masumoto, "Mg-Cu-Y Bulk Amorphous Alloys with High Tensile Strength Produced by a High-Pressure Die Casting Method," Materials transactions, JIM, Vol. 33, pp. 937-945, 1992.
[21] A. Inoue, A. Takeuchi, “Recent development and application products of bulk glassy alloys”, Acta Materialia, Vol 59, pp. 2243-2267, 2011
[22] A. Inoue, B. Shen, A. Takeuchi, "Developments and Applications of Bulk Glassy Alloys in Late Transition Metal Base System," Materials Transactions, Vol. 47, pp. 1275-1285, 2006.
[23] R. Abbaschian, L. Abbaschian, R. E. Reed-hill, Physical Metallurgy Principles, Third edition, p. 278, 1994.
[24] Q. Jing, Y. Zhang, D. Wang, and Y. Li, “A Study of the Glass Forming Ability in ZrNiAl Alloys”, Materials Science and Engineering: A, vol. 441, pp. 106-111, 2006.
[25] Z. P. Lu, C. T. Liu “Role of minor alloying additions in formationof bulk metallic glasses: A Review”, Journal of Material Science, Vol. 39, pp. 3965-3974, 2004.
[26] Z. P. Lu, C. T. Liu, W. D. Porter “Role of yttrium in glass formation of Fe-based bulk metallic glasses”, Applied Physics Letters, Vol. 83, Num. 13, pp. 2581-2583, 2003.
[27] J. Shen, Q. Chen, J. Sun, H. Fan, G. Wang, “Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy”, Applied Physics Letters, Vol. 86 pp. 151907-1-3, 2005.
[28] Z. P. Lu, C. T. Liu “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, Vol. 50, pp. 3501-3512, 2002.
[29] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, “New Criterion of Glass Forming Ability for Bulk Metallic Glasses”, Journal of Applied Physics, Vol. 101, pp. 086108-1-3, April 2007.
[30] C. T. McCarthy , M. Hussey, M. D. Gilchrist, “On the sharpness of straight edge blades in cutting soft solids: Part I - indentation experiments”, Engineering Fracture Mechanics , Vol. 74, pp. 2205-2224, 2007.
[31] C. T. McCarthy, A. Ni Annaidh, M. D. Gilchrist, “On the sharpness
of straight edge blades in cutting soft solids: Part II - Analysis of blade geometry”, Engineering Fracture Mechanics , Vol. 77, pp.437-345, 2010.
[32] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh, “Glass forming ability of bulk glass forming alloys”, Scr Mater, Vol. 36, p. 783, 1997
[33] S. Guo, Z.P. Lu, C.T. Liu, “Identify the best glass forming ability criterion”, Intermetallics, Vol. 18, pp. 883-888, 2010
[34] X. J. Gu, S. Joseph Poon, G. J. Shiflet, “Effects of carbon content on the mechanical properties of amorphous steel alloys”, Scripta Materialia, Vol. 57, pp. 289–292, 2007.
[35] C. Suryanarayana, A. Inoue, “Bulk Metallic Glasses”, p. 61, 2011.
[36] A. Inoue, Y. Shinohara, J. S. Gook, “Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting”, Material Transactions, Vol. 36, pp. 1427-1433, 1995
[37] S. J. Pang, T. Zhang, K. Asami, A. Inoue,“Bulk glassy Fe–Cr–Mo–C–B alloys with high corrosion resistance”, Corrosion Science, Vol 44, pp. 1847-1856, 2002.
[38] S. J. Pang, T. Zhang, K. Asami, A. Inoue, “ Materials Transactions New Fe-Cr-Mo-(Nb,Ta)-C-B Glassy Alloys with high glass-forming ability and good corrosion resistance”, Materials Transactions, Vol 42, pp. 376-379, 2001
[39] P. F. Gostin, A. Gebert, L. Schultz, “Comparison of the corrosion of bulk
amorphous steel with conventional steel”, Corrosion Science, Vol. 52, pp.273-281, 2010.
[40] E. McCafferty, “Validation of corrosion rates measured by the Tafel extrapolation method”, Corrosion Science, Vol 47, p. 3205, 2005
[41] Z. P. Lu, C. T. Liu, J. R. Thompson, W. D. Porter, “Structural Amorphous Steels”, Physical review letters, Vol. 92, num. 24, pp. 245503-1~4, 2004.
[42] X. J. Gu, S. Joseph Poon, G. J. Shiflet, M. Widom, “Ductility improvement of amorphous steels: Roles of shear modulus and electronic structure”, Acta Materialia, Vol. 56, pp. 88–94, 2008.
[43] M. D. Gilchrist, S. Keenan, M. Curtis, M. Cassidy, G. Byrne, M. Destrade, "Measuring knife stab penetration into skin simulant using a novel biaxial tension device," Forensic Sci Int, Vol. 177, pp. 52-65, May 2 2008.
[44] F. X. Qin, X. M. Wang, A. Inoue, “Effects of Ta on Microstructure and Mechanical Property of Ti-Zr-Cu-Pd-Ta Alloys”, Materials Transactions, Vol. 48, pp. 2390 to 2394, 2007.
[45] D. C. Hofmann, J. Y. Suh, A. Wiest, G. Duan, M.L. Lind, M. D. Demetriou, W. L. Johnson, “Designing metallic glass matrix composites with high toughness and tensile ductility”, Nature, Vol. 451, pp. 1085-1090, February 2008.
[46] Q. Chen, D. Zhang, J. Shen, H. Fan, J. Sun, “Effect of yttrium on the glass forming ability of Fe–Cr–Mo–C–B bulk amorphous alloys”, Journal of Alloys and Compounds, Vol. 427, pp. 190-193, 2007.