跳到主要內容

簡易檢索 / 詳目顯示

研究生: 周國斌
Kuo-Pin Chou
論文名稱: 使用DQN深度學習演算法的O-RAN無線電單元頻寬使用率之負載平衡機制
Deep Q-Learning Based Load Balancing Mechanism for Efficient Bandwidth Usage on Radio Unit in O-RAN Architecture
指導教授: 胡誌麟
Chih-Lin Hu
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 62
中文關鍵詞: 負載平衡頻寬資源分配強化學習O-RAN邊緣計算工業物聯網行動計算
外文關鍵詞: Load Balancing, Bandwidth Resource Allocation, Reinforcement Learning, O-RAN, Edge Computing, Industrial IoT, Mobile Computing
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現今工業物聯網(IIoT) 場域中,IIoT 設備之大幅增加,導致網路流量需求逐年上升,因而使其之控管變得極為不易。有鑑於此,O-RAN 之網路架構的設計恰好可有效解決此問題,相較於傳統的無線接取網路(RAN),O-RAN 將網路進行模組化之優點可讓網路供應商根據不同的環境場域進行相應的網路架構之設計,但由於O-RAN 架構中會有數個基地台與網路設備間彼此互連,其網路流量具有龐大、多變與複雜等特性且每一網路設備皆需要不同之服務品質需求,因而較難以傳統之演算法來進行控制,導致基地台間的頻寬使用率分配不均。本研究將採用強化學習中的DQN 模型來解決此問題,此模型可透過與環境的互動來對輸出結果進行動態與持續性的調整,而本研究將此特性用以針對IIoT 設備之服務品質需求與相應的O-RAN 基地台來進行連線配對,藉此來控制每一基地台之頻寬使用率,從而在滿足服務品質需求的條件下達到負載平衡之目標。而於最終的實驗結果顯示,本研究所提出之結合DQN 之ORAN 架構在相同連線環境的狀態下,各基地台的資源塊使用率分配相較於傳統上以節省能源以及節省頻寬使用為主的演算法較為平衡,以防止高流量所造成的延遲發生。在設備服務率方面,當設備數目上升時,本研究之方法也能妥善分配資源塊使用,使設備服務率下降的程度相較其他方法來的平緩。


    In Industrial Internet of Things (IIoT) field, the substantial increase of IIoT devices has led to an increase in network traffic and difficulty to management. The O-RAN architecture can effectively solve this problem. Compared with the traditional Radio Access Network (RAN), the advantages of O-RAN modularization of the network let the network vendors design corresponding network architectures for different environment . However, in O-RAN architecture, there will be several base stations interconnected with network equipment. The characteristics of variability and complexity, and each network device requires different QoS requirements, so it is more difficult to control with traditional algorithms, resulting in uneven allocation of bandwidth utilization among base stations. This research will use the DQN model in reinforcement learning to solve this problem. This model can dynamically and continuously adjust the output results through interaction with the environment, and this research uses the feature to meet the QoS requirements of IIoT devices. It is paired with the corresponding O-RAN base station to control the bandwidth utilization rate of each base station, so as to achieve the goal of load balancing based on QoS requirements. The results show that the ORAN architecture with DQN proposed in this paper is superior to the traditional energy-saving algorithm and bandwidth aware algorithm in various indicators such as load balancing, bandwidth utilization rate, and equipment service rate.

    摘要i Abstract ii 致謝iii 圖目錄vi 表目錄vii 1 簡介2 1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 背景與相關文獻探討4 2.1 O-RAN 架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.1 O-RAN 中的SMO 與non-rt RIC 模塊. . . . . . . . . . . . . . . . 6 2.1.2 O-RAN 中的near-rt RIC 模塊. . . . . . . . . . . . . . . . . . . . 7 2.1.3 O-RAN 上的簡易架構實現. . . . . . . . . . . . . . . . . . . . . . 9 2.2 在O-RAN 上運行的強化學習技術. . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 強化學習的基本介紹. . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 強化學習中的DQN 模型. . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 O-RAN 中強化學習的運行流程. . . . . . . . . . . . . . . . . . . . 14 2.2.4 O-RAN 中強化學習的準則. . . . . . . . . . . . . . . . . . . . . . 15 2.3 O-RAN 相關文獻之探討. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 系統架構20 3.1 以O-RAN 為架構的IIoT 系統設計. . . . . . . . . . . . . . . . . . . . . 20 3.2 問題定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 基於DQN 之資源塊使用率之負載平衡演算法. . . . . . . . . . . . . . . . 26 4 實驗與結果分析32 4.1 實驗環境. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.2 實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.1 資料預處理與輸入. . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.2 DQN 模型的訓練過程. . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.3 DQN 模型的收斂. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.4 DQN 方法與全局運算法的比較. . . . . . . . . . . . . . . . . . . . 38 4.3 實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.1 實驗模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5 結論與未來研究44 參考文獻45

    [1] A. Mahmood, L. Beltramelli, S. Fakhrul Abedin, S. Zeb, N. I. Mowla, S. A. Hassan,
    E. Sisinni, and M. Gidlund, “Industrial iot in 5g-and-beyond networks: Vision, architecture,
    and design trends,” IEEE Transactions on Industrial Informatics, vol. 18,
    no. 6, pp. 4122–4137, 2022.
    [2] T. ETSI, “123 501 v15. 2.0 (2018-06) 5g,” System Architecture for the 5G System
    (Release 15).
    [3] N. Kazemifard and V. Shah-Mansouri, “Minimum delay function placement and
    resource allocation for open ran (o-ran) 5g networks,” Computer Networks, vol. 188,
    p. 107809, 2021.
    [4] O. R. Alliance, “O-ran : towards an open and smart ran,” White paper, vol. 19, 2018.
    [5] O. Alliance, “O-ran architecture description,” O-RAN. WG1. O-RAN-Architecture-
    Description-v03. 00, Technical Specification, 2021.
    [6] ——, “O-ran non-rt ric: Functional architecture 1.01,” O-RAN. WG2. Non-RT-RICARCH-
    TR-v01. 01,Technical Specification, 2021.
    [7] ——, “O-ran near-rt ric architecture 2.01,” O-RAN.WG3.RICARCHv02.01,
    Technical Specification, 2022.
    [8] O.-R. B. DEMO, “https://wiki.o-ran-sc.org/display/GS/Getting+Started.”
    [9] Kubernetes, “https://kubernetes.io/.”
    [10] Docker, “https://www.docker.com/.”
    [11] M. v. Otterlo and M. Wiering, “Reinforcement learning and markov decision processes,”
    in Reinforcement learning. Springer, 2012, pp. 3–42.
    [12] O. Alliance, “O-ran ai/ ml workflow description and requirements 1.03,” ORAN.
    WG2.AIML-v01.03,Technical Specification, 2021.
    [13] M. M. Hasan, S. Kwon, and J.-H. Na, “Adaptive mobility load balancing algorithm
    for lte small-cell networks,” IEEE Transactions on Wireless Communications, vol. 17,
    no. 4, pp. 2205–2217, 2018.
    [14] M. V. G. Ferreira, F. H. T. Vieira, and D. C. Abrahão, “Minimizing delay in resource
    block allocation algorithm of lte downlink,” in 2015 International Workshop
    on Telecommunications (IWT), 2015, pp. 1–7.
    [15] S. Hwang and S. Park, “On the effects of resource usage ratio on data rate in lte
    systems,” in 2017 19th International Conference on Advanced Communication Technology
    (ICACT), 2017, pp. 78–80.
    [16] H.-C. Jang and Y.-J. Lee, “Qos-constrained resource allocation scheduling for lte network,”
    in International Symposium on Wireless and pervasive Computing (ISWPC),
    2013, pp. 1–6.
    [17] N. Guan, Y. Zhou, L. Tian, G. Sun, and J. Shi, “Qos guaranteed resource block
    allocation algorithm for lte systems,” in 2011 IEEE 7th International Conference on
    Wireless and Mobile Computing, Networking and Communications (WiMob), 2011,
    pp. 307–312.
    [18] H. S. Jang, H. Lee, H. Kwon, and S. Park, “Deep learning-based prediction of resource
    block usage rate for spectrum saturation diagnosis,” IEEE Access, vol. 9, pp. 59 703–
    59 714, 2021.
    [19] S. Messaoud, A. Bradai, O. B. Ahmed, P. T. A. Quang, M. Atri, and M. S. Hossain,
    “Deep federated q-learning-based network slicing for industrial iot,” IEEE Transactions
    on Industrial Informatics, vol. 17, no. 8, pp. 5572–5582, 2021.
    [20] M. C. Lucas-Estañ and J. Gozalvez, “Load balancing for reliable self-organizing industrial
    iot networks,” IEEE Transactions on Industrial Informatics, vol. 15, no. 9,
    pp. 5052–5063, 2019.
    [21] J. Li, G. Luo, N. Cheng, Q. Yuan, Z. Wu, S. Gao, and Z. Liu, “An end-to-end load
    balancer based on deep learning for vehicular network traffic control,” IEEE Internet
    of Things Journal, vol. 6, no. 1, pp. 953–966, 2019.
    [22] O. Houidi, D. Zeghlache, V. Perrier, P. T. Anh Quang, N. Huin, J. Leguay, and
    P. Medagliani, “Constrained deep reinforcement learning for smart load balancing,”
    in 2022 IEEE 19th Annual Consumer Communications & Networking Conference
    (CCNC), 2022, pp. 207–215.
    [23] Y. Ren, Y. Sun, and M. Peng, “Deep reinforcement learning based computation offloading
    in fog enabled industrial internet of things,” IEEE Transactions on Industrial
    Informatics, vol. 17, no. 7, pp. 4978–4987, 2021.
    [24] S. K. Singh, R. Singh, and B. Kumbhani, “The evolution of radio access network
    towards open-ran: Challenges and opportunities,” in 2020 IEEE Wireless Communications
    and Networking Conference Workshops (WCNCW), 2020, pp. 1–6.
    [25] T. Pamuklu, S. Mollahasani, and M. Erol-Kantarci, “Energy-efficient and delayguaranteed
    joint resource allocation and du selection in o-ran,” in 2021 IEEE 4th 5G
    World Forum (5GWF), 2021, pp. 99–104.
    [26] H. Lee, J. Cha, D. Kwon, M. Jeong, and I. Park, “Hosting ai/ml workflows on o-ran
    ric platform,” in 2020 IEEE Globecom Workshops (GC Wkshps, 2020, pp. 1–6.
    [27] A. Giannopoulos, S. Spantideas, N. Kapsalis, P. Gkonis, L. Sarakis, C. Capsalis,
    M. Vecchio, and P. Trakadas, “Supporting intelligence in disaggregated open radio
    access networks: Architectural principles, ai/ml workflow, and use cases,” IEEE
    Access, vol. 10, pp. 39 580–39 595, 2022.
    [28] Y. Cao, S.-Y. Lien, Y.-C. Liang, K.-C. Chen, and X. Shen, “User access control
    in open radio access networks: A federated deep reinforcement learning approach,”
    IEEE Transactions on Wireless Communications, vol. 21, no. 6, pp. 3721–3736, 2022.
    [29] S. F. Abedin, A. Mahmood, N. H. Tran, Z. Han, and M. Gidlund, “Elastic o-ran
    slicing for industrial monitoring and control: A distributed matching game and deep
    reinforcement learning approach,” 2021.
    [30] S. Mollahasani, M. Erol-Kantarci, and R. Wilson, “Dynamic cu-du selection for resource
    allocation in o-ran using actor-critic learning,” in 2021 IEEE Global Communications
    Conference (GLOBECOM), 2021, pp. 1–6.
    [31] T. D. Tran, K.-K. Nguyen, and M. Cheriet, “Joint route selection and content caching
    in o-ran architecture,” in 2022 IEEE Wireless Communications and Networking Conference
    (WCNC), 2022, pp. 2250–2255.
    [32] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia, “Intelligence and learning
    in o-ran for data-driven nextg cellular networks,” IEEE Communications Magazine,
    vol. 59, no. 10, pp. 21–27, 2021.
    [33] K. M. Addali, S. Y. Bani Melhem, Y. Khamayseh, Z. Zhang, and M. Kadoch, “Dynamic
    mobility load balancing for 5g small-cell networks based on utility functions,”
    IEEE Access, vol. 7, pp. 126 998–127 011, 2019.
    [34] T. ETSI, “138 101-1 v15. 2.0,” 5g.”
    [35] S.-Z. Huang, K.-Y. Lin, and C.-L. Hu, “Intelligent task migration with deep qlearning
    in multi-access edge computing,” IET Communications, vol. 16, no. 11, pp. 1290–
    1302, 2022.
    [36] R. Bellman, “Dynamic programming. mineola,” 2003.
    [37] Colab, “https://colab.research.google.com/notebooks/welcome.ipynb.”
    [38] J. Notebook, “https://jupyter.org/.”
    [39] TensorFlow, “https://www.tensorflow.org/?hl=zh-tw.”
    [40] Keras, “https://keras.io/.”
    [41] H. Yang, A. Alphones, W.-D. Zhong, C. Chen, and X. Xie, “Learning-based energyefficient
    resource management by heterogeneous rf/vlc for ultra-reliable low-latency
    industrial iot networks,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8,
    pp. 5565–5576, 2020.
    [42] H. Jiang, Y. Niu, B. Ai, Z. Zhong, and S. Mao, “Qos-aware bandwidth allocation
    and concurrent scheduling for terahertz wireless backhaul networks,” IEEE Access,
    vol. 8, pp. 125 814–125 825, 2020.

    QR CODE
    :::